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In population-based research, subjects are frequently in clusters with shared features or
demographic characteristics, such as age range, neighborhood, who they have for a physician,
and common comorbidities. Classification into clusters also applies at broader levels.
Physicians are classified by physician group or by practice site; hospitals can be characterized
by size, location, or demographics. Hierarchical, nested structures pose unique challenges in
the conduct of research. Data from nested structures may be interdependent because of
similarities among subjects in a cluster, while nesting at multiple levels makes it difficult to
know whether findings should be applied to the individual or to the larger group. Statistical
tools, known variously as hierarchical linear modeling, multilevel modeling, mixed linear
modeling, and other terms, have been developed in the education and social science fields to
deal effectively with these issues. Our goal in this article is to review the implications of
hierarchical, nested data organization and to provide a step-by-step tutorial of how multilevel
modeling could be applied to a problem in anesthesia research using current, commercially
available software. (Anesth Analg 2011;113:877–87)

HYPOTHESIS TESTING AND
EXPERIMENTAL DESIGN
Scientific research frequently centers on testing hypotheses
with controlled experiments. The scientist develops a hy-
pothesis based on established knowledge and previous
data, and then designs an experiment that will deliver
information about the validity of the hypothesis. In its
simplest form, a controlled experiment involves comparing
an experimental group with a control group. The 2 groups
differ in 1 factor important for the hypothesis, with all other
factors and conditions held constant. The data for the 2
groups are compared by t test, Mann-Whitney U test, linear
regression, or another form of statistical analysis appropri-
ate for the data and the experimental design.

Although designing a controlled experiment is generally
straightforward for bench laboratory research, the matter
can be problematic for population-based human subjects
research. Human subjects vary in innumerable ways that
are impossible to control directly. They have a wide range
of physical characteristics such as age, and they differ in
genotype, ethnicity, socioeconomic group, and health sta-
tus. They also vary in education, employment, residence
location, environmental exposure, and other aspects of
personal history. The uncontrolled sources of variability

may require an investigator to increase sample size, balance
subject characteristics as much as possible, and/or use a
multivariate analysis for the purpose of accounting for the
effects of covariates in the proposed model.

HIERARCHICAL STRUCTURES
In addition to these issues, subjects are frequently in
clusters with shared features or demographic characteris-
tics. For example, individuals may be nested by the area
where they live, who they have as a physician, or their
ethnic group. Nested structures are hierarchical because
they exist at many levels; individuals can be nested in
groups and groups of people can be clustered into larger
structures. For a cross-sectional design, the hierarchy may
split into a micro level, referring to individuals, and a
macro level, referring to larger groups. Hierarchical struc-
tures are embedded in a wide array of disciplines, ranging
across medicine, sociology, education, psychology, and
business.1 In education, a student is nested within class,
which in turn is nested within school, then neighborhood.
In anesthesiology research, patients are nested according to
the anesthesiologist providing their care, anesthesiologists
may be nested within their institution or hospital, and the
hospital may be nested by size, location, profit status, or
other factor.

CONSEQUENCES OF NESTING
It is well known from contextual studies that some degree
of interrelationship characterizes nested structures within a
given level and that the data may be interdependent.
Interdependence may occur if the subjects belong to the
same group, live in close vicinity to each other, share
experiences, or are studied in the same short timeframe. For
example, practice patterns may be homogeneous within an
anesthesiology group and heterogeneous between groups.2

Thus, patients under the care of one group of anesthesiolo-
gists at the same hospital could be expected to respond
more closely to each other than to patients of another group
at a different hospital because of similarities in how the
anesthesia is delivered.
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Ignoring the consequence of hierarchical structures has
been shown to result in underestimation of the standard
errors, inflate rate of type I errors as a consequence, and
lead to wrongful rejection of the null hypothesis when it is
true. Nonindependence also distorts the estimated error
variance, confidence intervals, P values, and effect sizes,
potentially leading to an increase in type II errors and a
concomitant decrease in power.3 Whatever the direction of
the error, a solution for interdependent data is to calculate
a separate estimate of variance for each level of clustering.

Besides the interdependence errors, hierarchical struc-
tures also create problems in interpreting results. Suppose
the researcher has dealt with the hierarchy by aggregating
the data for individuals within each cluster, directing the
analysis at the macro level. What conclusions can be drawn
regarding the individuals in the study based on this
analysis? The investigator is at risk of making what is called
the ecological fallacy, using inferences derived from the
group to reach conclusions about the individual. Con-
versely, disaggregating the data to evaluate results at the
micro level may result in the atomistic fallacy, extending
inferences from the individual to the group.4,5

MULTILEVEL MODEL ANALYSIS
Fortunately, the statistical theory for clustered, hierarchical
data is well established and has a prominent role in dealing
with these issues. Many descriptors and titles have been
applied to designs that contain hierarchical structures:
mixed linear models, multilevel linear models, mixed-
effects models, random-effects models, random-coefficient
regression models, and/or covariance components mod-
els.6 An oft-used name, hierarchical linear modeling, is
actually the title of a well-known software (HLM).7 For
purposes of this article, we refer to hierarchical designs as
multilevel models (MLM), a common term used in a
diverse range of disciplines.

MLM can analyze hierarchical structures of all kinds in one
unified framework. Factors can be fixed (e.g., male versus
female) or random (e.g., sampling of hospitals from a popu-
lation of institutions). The design can be cross-sectional or
follow a multiwave/longitudinal structure, whereby time is
nested within the individual.4 A distinct advantage of MLM is
the ready ability to handle missing data or imbalanced
designs. This is especially beneficial for longitudinal designs,
where it is not uncommon to have missing time points. The
default action for many non-MLM software programs is to
delete all the data from an individual case if even one item is
missing (i.e., listwise deletion). MLM will use all available
data, even if there is only one wave of data for a given
individual. However, different missing data techniques (e.g.,
full information maximum likelihood, multiple imputation)
must still be pursued depending on why the data are missing
(e.g., missing completely at random, missing at random), so it
is paramount that the researcher attempt to discern the
reason.8–10

Mixed linear models have been used in human subjects
research for several decades,5,6 but procedures were un-
wieldy until the advent of MLM software in the 1980s. The
sociology and education fields embraced these advances
readily and rapidly.7 The adoption of MLM has progressed

more slowly in medical specialties, including anesthesiol-
ogy, but has become more prominent recently. For ex-
ample, an article in this issue of Anesthesia & Analgesia
describes an MLM-based analysis of how factors such as
previous training experience, occupation, training equip-
ment, and number of practice attempts affect development
of laryngoscopy skill.11 Within the past year, articles in
other journals have described the use of MLM methods to
study factors associated with anesthesiologist assistance
with colonoscopy and factors affecting recovery from vola-
tile anesthesia.12,13 The analysis methods and the related
concepts may not be familiar to many anesthesiologists.
Thus, the goal for this article is to serve as a primer for the
statistical and methodological advances for testing these
relatively complex data and design structures. We will
proceed by demonstrating a small MLM analysis in an
anesthesia scenario.

MLM TUTORIAL USING SAMPLE DATA
Data Source
For illustrative purposes, we obtained data from a database
often used in education research, the National Education
Longitudinal Study of 1988 (NELS:88). The original data-
base is publicly available (http://nces.ed.gov/surveys/
nels88/) and contains aggregate data without personal
identifying information. The data used for the statistical
analysis in this tutorial are available as online supplemental
data (see Supplemental Digital Content 1 and 2: Supple-
mental Table 1, http://links.lww.com/AA/A267, and
Supplemental Table 2, http://links.lww.com/AA/A268).

Hypothetical Study
The identity of the variables in the original study is
immaterial in conducting the MLM. Therefore, we will
perform the analysis as if it were an anesthesiology study to
make the text more interesting to the reader. Let us suppose
that the hypothetical project is a study of factors that affect
recovery from general anesthesia. The database includes
7185 subjects at the micro level who will be patients,
clustered at the macro level among 160 anesthesiologists
who provided their care. We will designate a continuous
outcome variable as the quality of recovery (QR) score. A
study of recovery from anesthesia would probably collect
data for a large number of micro-level demographic factors,
many patient-specific variables regarding health and physi-
cal condition, and information concerning the anesthetic
and surgery. The MLM method is the same whether many
or few variables are analyzed. To make the analysis easier
to follow, we decided to include only 2 patient variables,
“Preoperative Physical Status” score (Preop PS) for each
patient and age. Preop PS is intended to be a hypothetical
continuous version of the ASA classification. We used a
random number generator set to a predetermined mean
and SD of 56 � 9 years to assign ages to the patients. We
did not purposefully induce a correlation between age and
outcome, but did allow age to vary across the anesthesiolo-
gist clustering variable, with means ranging from 49.7 to
59.1 years. Finally, we decided that the binary macro-level
modifier would refer to the anesthesiologists’ hospital
setting, either a large metropolitan medical center or a
nonmetropolitan hospital.
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Model Construction
At this point, we have selected the relevant variables and
excluded irrelevant ones, the first in an array of decisions to
be made in performing MLM. The next step is to choose the
proper statistical model. We selected a model with a
continuous level outcome using an identity link function
(implying normally distributed outcome and residuals)
because it was appropriate for our data and problem. Also,
the analysis for this type of outcome will be familiar to most
readers who use multiple linear regression. Many of the
same assumptions and issues that are central to regression
models (e.g., normality of residuals, multicollinearity, ho-
moscedasticity) also pertain to MLM.14 After establishing
the model to test, the investigator should consider whether
logarithmic or similar data transformations for the outcome
are needed to normalize the residuals, contemplate the
need for nonlinear terms (frequently quadratic) to compen-
sate a nonlinear relationship between the predictor and
outcome, decide whether multiplicative interaction terms
should be included within or across levels, and pick the
algorithm to adjust for missing observations. Adjustment
for missing data can be accomplished with full information
maximum likelihood or restricted maximum likelihood
algorithms, which are incorporated in many of the software
packages. We picked a restricted maximum likelihood
algorithms estimator because it adjusts for the uncertainty
of the fixed effects, and has shown many favorable prop-
erties.1 Our data needed no transformation because the
residuals were normally distributed and we expected a
linear relationship between predictor and outcome. We
discuss interaction terms below.

Many software programs use listwise deletion as the
default missing data technique. This technique is problem-
atic unless it can be shown that the absent data are missing
completely at random, the most restrictive assumption. If
the data are missing at random, not as restrictive as missing
completely at random, then multiple imputation or full
information maximum likelihood are plausible alternatives.
The least restrictive assumption would be that data are not
missing at random. If this is the case, the mechanism for the
missing data cannot be ignored and more complex meth-
ods, such as selection models or pattern mixture models,
would be needed to account for not missing at random in
the analysis. Further discussion is beyond the depth of this
review. The reader may learn more about using maximum
likelihood algorithms in reviews by Enders.9,15

In regression, continuous level predictors are mean
centered so as to render the regression coefficients more
interpretable and as well to decrease collinearity.16 Center-
ing is also an issue in mixed linear models. For purposes of
this review, grand mean centering (score � grand mean)
was conducted. The following citations provide more in-
formation regarding centering options.17–19

Software
For this article, the hypothesized model is tested by HLM
6.08 (Scientific Software, International, Lincolnwood, IL),
an MLM dedicated software, SPSS 18.0.2 mixed linear
model option (IBM, Chicago, IL), and Stata 11 (StataCorp
LP, College Station, TX), a frequently used software in the
medical sciences. SPSS, a more general-purpose software

akin to SAS, is used primarily to obtain information-
theoretic indices that are not included in the HLM output.
These indices are discussed in a following section. Detailed
outputs are provided and the fixed and random coefficients
are interpreted.

In addition to these programs, several software pack-
ages can be used to test multilevel models. The rationale for
choosing a specific package depends to an extent on
personal preference and may also vary with the research
discipline. For example, many investigators in the medi-
cally related sciences use MLwiN, whereas researchers in
education and psychology frequently use HLM. Mixed
linear modeling is also embedded in many familiar soft-
wares such as SAS, SPSS, and Stata or in structural equation
modeling software such as Mplus. Similar algorithms are
used across softwares; thus, one software is not necessarily
superior to the other. However, distinct differences may be
found in terms of capability. For instance, HLM can be used
for a variety of outcomes (e.g., multinomial, binary, counts,
ordinal), whereas the mixed modeling option in SPSS (at least
up to the current version) is restricted to testing outcomes that
are continuous (i.e., assumedly interval level).

Descriptive Statistics
A good practice is to examine the data before engaging in
the detailed modeling work. Table 1 presents the descrip-
tive statistics for the level 1 and level 2 variables in our
problem. Level 1, the micro level, consists of the ni � 7185
patients, whereas level 2, the macro level, refers to the nj �
160 anesthesiologists. The descriptive statistics at level 1
include a mean � SD QR score of 12.75 � 6.88, an average
age of 55.98 � 9.05 years, and an average Preop PS score of
4.99 � 0.66. The correlations of the age and Preop PS
predictors with the QR outcome are �0.04 and 0.21, respec-
tively. Hospital type was the only level 2 predictor. The
anesthesiologists were split with 56.2% (nj � 90) working at
a nonmetro hospital and 43.8% (nj � 70) at a large metro
institution. As with regression models, collinearity (i.e.,
overlap or interdependence) of the predictors should be

Table 1. Descriptive Statistics for Level 1 and
Level 2 Variables in the Hypothetical Multilevel
Modeling Analysis of Quality of Recovery in
Anesthesiology Patients

Variables Mean � SD
Range

(minimum–maximum)
Level 1 (ni � 7185)

Preop PS score 4.994 � 0.661 1.34–7.85
Age, y 55.08 � 9.05 19.7–89.0
QR score 12.748 � 6.878 �2.83 to 24.99

Frequency (n) Percentage
Level 2 (nj � 160)

Nonmetro hospital 90 56.3
Large metro hospital 70 46.8

Pearson correlation Significance
Level 1 correlations

Preop PS versus age 0.012 0.301
Preop PS versus QR 0.21 0.0001
Age versus QR �0.038 0.001

PS � physical status; QR � quality of recovery.
Significance for correlations is 2-tailed.

Multilevel Modeling in Anesthesiology Research

October 2011 • Volume 113 • Number 4 www.anesthesia-analgesia.org 879



preferably minimal. Accordingly, the Pearson correlation
coefficient between age and PS score was r � 0.012, not
significant in a 2-tailed test. The level at which collinearity
becomes an issue is a matter of opinion. Cohen et al.16

indicate that collinearity becomes problematic if r2 �0.9,
but we would worry about instability in the solution with
that cutoff level. We are generally comfortable if r2 �0.25.

Testing the Unconditional Means Model
It is often recommended that a sequence of models be
examined for fit to ascertain the best model to select.20 At
the simplest level, one often commences by fitting data to
the unconditional means model, a rudimentary model that
omits predictors. Its primary objective is to investigate the
extent of the heterogeneity between the clusters, thereby
establishing the rationale for analyzing an MLM. A regres-
sion without predictors generates an equation with no
slope and an intercept that is equal to the mean of the
outcome variable. The unconditional model averages the
outcome variable for the level 1 units (the patients in our
problem) across the level 2 units (the anesthesiologists) and
partitions the variance between level 1 and level 2. The
between-cluster variance then represents the heterogeneity
between the clusters at level 2. For the analysis of our
dataset, the equation for the unconditional means model
for our dataset is QR � B0, where B0 is the mean QR score.
We refer to this analysis as model “M1.” We provide the
SPSS code for this model and subsequent models in
the Appendix (see Supplemental Digital Content 3,
http://links.lww.com/AA/A269).

Figure 1 displays the output produced by HLM 6.08 in
analyzing model M1. It includes the following estimates:

1. The level 2 intercept for the QR score, B0. B0 is the
mean QR for each anesthesiologist, the level 2 units,
and G00 is the average intercept across the 160
anesthesiologists. A statistician would label the inter-
cept, �0j, with the subscripted “0” identifying the

quantity as an intercept and the subscripted “j”
linking it to level 2 (j anesthesiologists). The HLM
output shows that the average intercept is 12.64
(SE � 0.24) and that it is significantly different from
0 (P � 0.05).

2. The random effect for QR at level 1, R. R is the
variance estimate for the patients (level 1). In our
example, R � 39.15.

3. The increment in intercept associated with level 2, U0.
U0 is the variance component estimate mentioned in
the previous paragraph that captures the variation in
intercept, QR, between anesthesiologists at level 2.
For our data, U0 � 8.61.

What makes the unconditional means model particularly
useful is the computation of the intraclass correlation
coefficient (ICC). The reference to correlation arises because
the ICC gives a measure of how homogeneous the data are
within a level 2 cluster unit, i.e., how well the data within
a unit correlate with each other, compared with between
clusters.21 The ICC value increases as heterogeneity in-
creases. The ICC can be computed at any stage of modeling,
but it is particularly informative for the unconditional
means model in furnishing evidence of the extent of a
clustering effect. In our analysis, the data in question are
the QR values, “within cluster” refers to data for a given
anesthesiologist, and the between-cluster comparison
would examine QR values from different anesthesiologists.
In model M1 with our data, the ICC is calculated by
dividing the level 2 variance, U0, by the total variance, U0 �
R, as follows, ICC � 8.61/(8.61 � 39.15) � 0.18. Thus, 18%
of the variability is attributable to differences between
anesthesiologists, rather than within patient differences.
Although there is no invariable rule as to what constitutes
a high ICC, many authorities in education and other
disciplines that use MLM frequently opine that an ICC of
5% is substantive evidence of a clustering effect. On that

Figure 1. Output from HLM 6.08 analyz-
ing the unconditional means model for
the hypothetical anesthesiology study,
model M1. B0 is the mean patient quality
of recovery score averaged across the
160 anesthesiologists. U0 and R are the
variances ascribed to between-patient and
between-anesthesiologist differences. U0
and R are used to calculate the intraclass
coefficient, an indicator of whether multi-
level modeling is appropriate for the data
(see text).

STATISTICAL GRAND ROUNDS

880 www.anesthesia-analgesia.org ANESTHESIA & ANALGESIA

http://links.lww.com/AA/A269


basis, MLM analysis seems warranted for our dataset.
Conversely, there would not have been the same rationale
for a multilevel approach had the ICC been substantively
�0.05. Table 2, a sample from a few of the 160 anesthesi-
ologists, shows distinct interanesthesiologist differences in
the mean QR, furnishing support for the relatively high
ICC and strengthening the case for proceeding with MLM.

Testing the Research Question with More
Complex Models
We are now ready to investigate whether Preop PS and age
have an impact on the QR score using MLM methods. The
procedure will be to fit the data to models that add in
progression level 1 predictors, level 2 predictors, and
possibly interaction terms. Deciding whether these models
represent improvements and selecting the “best” model is
somewhat subjective. However, information-theoretic indi-
ces, such as the Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC), can be used to com-
pare how the data fit 2 successive models.22,23 A reduction
of the AIC or BIC may indicate a more favorable result for
the new model. In the unconditional means model for our
data, the AIC � 47,121 and the BIC � 47,135. We will repeat
the calculations with subsequent models, looking for reduc-
tions in the indices to determine whether adding the
predictors provides a better fit to the data. The indices can
be determined by the SPSS mixed linear model option,
Mplus software, and SAS proc mixed.

Another option is to compare the deviance statistic,
calculated as �2 times the difference in the logarithms of
the fitted and full parameters in the model. The deviance
statistic is calculated by HLM 6.08 (see outputs in Figs. 1
and 3 for examples), but AIC and BIC are not. If one uses
the full information maximum likelihood estimator (as
opposed to the default restricted maximum likelihood), one
can take the differences of the deviances between models
and compare the results with a �2 table. A significant
finding would furnish support for the better-fitting model.
The variance components and information-theoretic indices
for each of the tested models are furnished in a table at the
end of the analysis.

MLM Analysis of Level 1 Predictors
At this juncture, 2 level-1 predictors, patient age and PS
score, are entered into the analysis as model M2. The
equation for this model is QRij � B0 � B1 � (AGEij) �
B2 � (PSij) � R where the ij subscript refers to the individual
patient, B1 and B2 are the partial regression coefficients
related to age and PS, respectively, and R is the level 1
residual. From the HLM output in Figure 2, both predictors
are significant (controlling for other model covariates): age
(B1 � �0.033 � 0.008, mean � SE, P � 0.05) and PS score
(B2 � 2.20 � 0.108, P � 0.05). Interpreting the results for
age, we see there is a slight decrease in the outcome (0.03)
concomitant with a 1-unit increase in age. We see for each
unit change in the PS score, there is a 2.20 increase in the
outcome. Stata 11.0 gives similar results when analyzing
this model.

There is a slight increase in the variance component of
the intercept in this model compared with the uncondi-
tional means model. U0 increases from 8.61 to 8.69 (output
not shown). However, R, the level 1 residual, decreases
from 39.15 to 36.92. Based on this reduction, one can
calculate the proportional reduction in residual variance,
an estimate of effect size, using what is referred to as a
pseudo R2 statistic.22 The computation is as follows:
(39.15 � 36.92)/39.15 � 0.057; thus, incorporating the 2
level-1 predictors in the model leads to a 5.7% reduction in
error. Further evidence is a decrease in the AIC from 47,121
for the unconditional means model to 46,719 for this model.
Similarly, the BIC decreases from 47,135 to 46,733. Hence,
adding age and Preop PS score as predictors appears to
improve the model fit.

Table 2. Average Quality of Recovery Score for
Selected Anesthesiologists in the Study, Showing
Substantial Variation Across Anesthesiologists
Anesthesiologist

ID
No. of

patients QR (mean � SD)
1224 47 9.72 � 7.59
1288 25 13.51 � 7.02
1296 48 7.64 � 5.35
1308 20 16.26 � 6.11
1317 48 13.18 � 5.46
1358 30 11.21 � 5.88
1374 28 9.73 � 8.36
1433 35 19.72 � 3.88
1436 44 18.11 � 4.55
1461 33 16.84 � 6.95
1462 57 10.50 � 6.31
1477 62 14.23 � 7.15
1499 53 7.66 � 6.34

QR � quality of recovery.

Figure 2. HLM 6.08 analysis of the model with the level 1 predictors, model M2. Quality of recovery depends significantly on both physical
status (PS) score and age.
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Modeling the Level 2 Predictor
At this stage, hospital is evaluated as a level 2 predictor in a
model along with the level 1 predictors, age and Preop PS,
generating model M3. To account for the level 2 effects, the
intercepts and slopes from the level 1 regression equations for
the j � 160 anesthesiologists become outcomes that vary with
the level 2 predictor, hospital type. The equation for intercept
can be written, �0j � �00 � �01 (hospital) � u0j, where �0j is the
level 1 intercept for the jth anesthesiologist, �00 is the regres-
sion intercept, �01 is a slope for the effect of hospital type,
(hospital) is a binary variable that can take 1 of 2 values
depending on whether the hospital is large metro versus
nonmetro, and u0j is the residual. Similarly for level 1 slopes,
the equation would be �1j � �10 � �11 (hospital) � u1j, where
�1j is the slope of the age regression equation for the jth

anesthesiologist and the other parameters are defined analo-
gously to the parallel parameters for the intercept equation.
Similar equations would be written for the PS slopes as
outcomes, substituting a 2 in place of the 1 in the initial
position in each of the subscripts used in the age slope
equation.

The HLM output for model M3 is presented in Figure 3.
(Gammas in the output are written as “Gs” and betas as
“Bs”.) The output shows that the 2 level-1 predictors are
still significant: the age slope is G10 � �0.033 � 0.008, P �
0.05, and Preop PS slope is G20 � 2.20 � 0.108, P � 0.05.
Moreover, the level 2 predictor is significant: G01 � 2.8 �
0.44, P � 0.05. The G01 coefficient signifies that there is a 2.8
units difference in the average QR between groups, with a
higher intercept captured by the large metro hospitals. This

Figure 3. A, HLM 6.08 analysis of model with level 2 predictors, model M3. The type of hospital (metro versus nonmetro) has a significant
effect on quality of recovery (QR), as noted by the G01 slope. The level 1 variance component, R, decreases compared with the value in the
previous model as shown in Figure 2, suggesting an improvement in the fit to the data. B, QR scores differed between large metro and
nonmetro hospitals by 2.8, as predicted by the G01 coefficient given in part A. C, SPSS 18.0.2 calculated the same intercept variance
component and level 1 residual as HLM 6.08 and displayed additional parameters not reported by HLM 6.08.
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is verified in Figure 3B, where QR is14.20 for metro versus
11.39 for nonmetro hospitals.

In terms of the fit, we see a substantive decrease in the
variance component of the intercept compared with the
prior model from 8.69 to 6.76, even though the level 1
residual R increases by 0.01 from 36.92 to 36.93 (Fig. 3A).
Because of the reduction for the intercept, the pseudo R2

statistic would demonstrate that incorporating the hospital
macro-level predictor into the model reduces the variance
component by 22.2%. The AIC and BIC decrease apprecia-
bly with this model, now at 46,682 and 46,696, respectively,
presenting further evidence of improved model fit.

For purposes of comparison, Figure 3C shows the out-
put for the model random effects generated by SPSS 18.0.2
software. The U0 and R values are the same as listed in
Figure 3A, but other parameters that were not provided by
HLM 6.08 are included, such as Wald z and the 95%
confidence intervals.

Anesthesiologist as a Stochastic Predictor
One might want to investigate whether the relationship
between the level 1 predictors and QR varied across different
anesthesiologists. This can be accomplished by estimating the
slopes, QR versus age or QR versus PS score, for patients
under the care of each anesthesiologist and calculating the
variance component attributable to the anesthesiologist. In-
stead of treating the slopes as fixed parameters, they are
allowed to vary randomly across anesthesiologists. The slopes
within anesthesiologists are being considered as random
effects in what is often called a random coefficient model. A
statistician would also state that the model added a stochastic
or probabilistic property to the slopes.

When this analysis is performed as model M4, all level 1
and level 2 predictors remain significant, as shown in Figure
4A in the section labeled “Fixed Effect.” The output for the
same parameters from SPSS 18.0.2 has a similar result (Fig.
4B). The Random Effect section of Figure 4A shows the

Figure 4. A, Output for model considering slopes for quality of recovery (QR) versus physical status (PS) and age within anesthesiologists to
be random effects, model M4. The PS score slope appears to vary significantly with anesthesiologist, shown by variance component U2, but
the age slope does not. B, Output generated by SPSS 18.0.2 for the same model. Parameters that are common with the HLM 6.08 output
match exactly. C, Information-theoretic indices, the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), decrease with this
model compared with the previous model, indicating a better fit to the data adding a stochastic component for anesthesiologist slope. The
calculations were performed using SPSS, because HLM 6.08 does not provide the option to calculate AIC or BIC.
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variances. The anesthesiologist-dependent variance compo-
nent for age, listed as U1, is not significant (P � 0.148), but
significance was obtained for the variation in the preop score
slope by anesthesiologist (P � 0.003). Interestingly, although
the AIC somewhat decreases with the addition of the stochas-
tic parameters for the slopes, the BIC worsens a bit (Fig. 4C).
Given that the variance component for age did not impact fit,
the model was retested analyzing random effects only for the
PS score slope and not the age slope (model M5). Now we
find a slight decrease in the AIC (46,666.48) and the BIC
(46,694). The inference from this analysis might be that the
impact of Preop PS score on patient QR depends to some
extent on the anesthesiologist in this dataset, but the impact of
age does not. The effect of modeling PS score as a stochastic
parameter is illustrated by the pattern of random intercepts
and slopes for the QR versus PS plots from a few of the
anesthesiologists shown in Figure 5. Slopes and intercepts
differ from one anesthesiologist to the next.

Modeling Interactions Across Levels
Model M6, the final model to be considered, involves
adding a cross-level interaction to model M5. In this
instance, we are interested in examining whether the level
1 predictor, PS score, interacts with the level 2 predictor,
hospital. Here we gain further appreciation for the advan-
tages of a multilevel approach through our ability to model
the synergistic relationship between micro- and macro-
level variables in one model. For model M6, a significant
interaction was observed between PS score and hospital:
G21 � �1.34 � 0.233, P � 0.05 (Fig. 6). However, the
variance component for the PS slope is no longer significant
(P � 0.177), although we see a slight reduction in the
residual and variance component for the intercept. This
demonstrates the dynamic nature of multilevel models. We
also observe a decrease in the information-theoretic indices,

indicating that adding the cross-level interaction may aid in
improving model fit. Although only a small random sam-
pling, we see in Figure 7 the nature of the interaction
between hospital and Preop PS score; the nonmetro hospi-
tal evidences a stronger slope for the Preop PS/QR score
relationship than does the metro hospital category. Inter-
actions between age and hospital type have not been
analyzed but could be estimated in a similar manner.

Choice of Model
Table 3 summarizes relevant parameters as we moved from
one model analysis to the next. The AIC and BIC
information-theoretic criteria and the variances generally
decreased as we advanced between models. This pattern
suggests that the added components improved model fit to
the data and could identify important relationships. How-
ever, interpreting the implications of data modeling always
requires an educated appraisal of the scientific questions. In
some cases, changing the model may not lead to an obvious
improvement in fit, or the indices may provide a mixed
picture. Such situations require the investigator to exercise
judgment or search for additional objective indications for
how to proceed. Practical considerations would include
whether changing the model led to a substantive change in
conclusions or whether the data quality and quantity were
sufficient to pursue the more complex model. Examining
the data may prove helpful. For example, plotting QR score
versus age data separated by anesthesiologist suggested
that the age slope does not vary with anesthesiologist and
provides an indication that elements of model M4 could be
omitted. Evaluating a different model empirically, as we
did with model M5, could accomplish the same goal.
Analyzing the data from different perspectives could be
useful. In this regard, comparing average QR scores for
different anesthesiologists in Table 2 reinforced the impres-
sion given us by the unconditional means model M1 that
MLM was warranted for our dataset. Finally, the findings
of previous investigations could aid in making decisions.

One primary assumption in regression models is referred
to as model specification. It entails including the proper
variables and covariates in the postulated model and exclud-
ing irrelevant ones. In addition, the model specification as-
sumption implies that proper mathematical modeling with
nonlinear terms (quadratic and others) and multiplicative
terms (interactions) has been used. The investigator has to
balance efforts to optimize model fit against the risk of adding
undue complexity, which may compromise model parsimony
or result in overfitting the model.

Was MLM Valuable in This Analysis Over Least
Squares Methods?
One might ask whether an ordinary least squares regres-
sion (OLS) would have led to the same inferences as MLM
in this tutorial. An argument could be made for using
multiple regression if one thought that the evidence for
clustering were negligible, although a decision would still
be needed whether to perform the regression at the micro
(patient) or macro (anesthesiologist) level. We have re-
peated our data analysis with a least squares approach and
present the outcomes along with the MLM results in Table
4 to illustrate the differences. The parameter estimates for

Figure 5. Plot of quality of recovery (QR) versus physical status (PS)
score separated by individual anesthesiologists, as noted by the
different colors. Slopes and intercepts vary with the anesthesiologist,
as indicated by the multilevel modeling analysis shown in Figure 4.
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both the micro- and the macro-level predictors are fairly
similar whether calculated by HLM or OLS at the indi-
vidual patient level (n � 7185). The only major difference is
in standard errors for the level 2 hospital predictor. Thus,
both MLM and OLS approaches would find that QR score
varied inversely with age and directly with PS score and
both would conclude that QR was significantly higher, on
average, at large metro hospitals. However, MLM and OLS

would deliver marked differences if the data were modeled
at the anesthesiologist level (j � 160) for Preop PS score.
Thus, OLS at the macro level would miss the important
relationship between PS score and QR if the data were
aggregated, a result of the ecological fallacy mentioned
earlier. Furthermore, OLS analysis at the micro or macro
level would not identify the cross-level interaction between
hospital and the QR-PS slope (model M6) nor would OLS

Figure 6. Modeling interactions between the level 1 physical status (PS) score and the level 2 hospital variable, model M6. The quality of
recovery (QR) versus Preop PS score slope varied significantly with hospital type. A, HLM 6.08 output; B, SPSS 18.0.2 output for the same
model; C, Information theoretic indices to evaluate fit.

Multilevel Modeling in Anesthesiology Research

October 2011 • Volume 113 • Number 4 www.anesthesia-analgesia.org 885



reveal that the QR-PS slope varied with anesthesiologist
(models M4 and M5). Thus, the advantage of MLM was to
incorporate and accommodate the effect of clustering, a ben-
efit of HLM noted earlier in this article. If our data had
included repeated measures, the MLM would also allow
incorporation of a working correlation matrix (autoregressive

or compound symmetry) to nest time within the patient, who
then may be nested within the anesthesiologist.

Summary
The above primer only begins to identify the breadth of
models that MLM is equipped to test. A host of nonlinear

Figure 7. Plots of quality of recovery versus Preop physical status (PS) score for patients at nonmetro hospitals (A) or large metro hospitals
(B). Slopes appear greater at the nonmetro hospitals.

Table 3. Summary of Models

Parameter

M1:
unconditional

means

M2: M1 � fixed
level 1

predictors

M3: M2 � fixed
level 2

predictors
M4: M3 � random

level 1 slopes
M5: M3 � random

slope for PS

M6: M5 �
cross-level
interaction

Intercept (B0j) 12.64* 12.64* 11.39* 11.11* 11.11* 11.40*
Age slope (B1j) �0.033* �0.033* �0.032* �0.032* �0.033*
PS slope (B1j) 2.20* 2.20* 2.22* 2.22* 2.81*
Hospital (G11) 2.80* 3.46* 3.47* 2.80*
PS � hospital �1.34*
Level 1 residual (Rij) 39.15 36.92 36.93 36.55 36.63 36.61
Variance component

for intercept (U0)
8.61* 8.69* 6.76* 6.87* 6.87* 6.76*

Variance component
for age slope (U1)

0.00098

Variance component
for PS slope (U1)

0.675* 0.68* 0.30

AIC 47120 46718 46682 46670 46666 46637
BIC 47134 46732 46696 46718 46694 46665

PS � physical status; AIC � Akaike Information Criterion; BIC � Bayesian Information Criterion.
* P � 0.05.

Table 4. Comparison of Results Obtained by Multilevel Modeling or by Ordinary Least Squares Regression
at the Micro or Macro Level

MLM (n � 7185)
OLS: micro level, patients

(n � 7185)
OLS: macro level, anesthesiologists

(n � 160)

B SE P value B SE P value B SE P value
Intercept 11.390 0.293 �0.001 2.056 0.756 0.007 691.113 3983.058 0.862
Age �0.033 0.008 �0.001 �0.030 0.009 �0.001 0.166 0.161 0.304
Preop PS 2.197 0.109 �0.001 2.196 0.117 �0.001 �137.940 797.826 0.863
Hospital 2.802 0.440 �0.001 2.803 0.155 �0.001 2.826 0.447 0.000

MLM � multilevel modeling; OLS � ordinary least squares regression; PS � physical status.
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models can be tested via a hierarchical generalized model-
ing approach including models with binary outcomes
(using a logit link function), counts (Poisson model with log
link), or ordinal outcomes. Also, models with �2 levels can
be tested, such as a 3-level model in which students are
nested within classes nested within schools. Models with
�2 levels can still accommodate predictors at each level.
Another variation on the MLM approach is in longitudinal
studies18,19 whereby time is nested within the individual.
MLM analysis of longitudinal studies provides much
flexibility in how to model time, as opposed to the fixed
nature (i.e., wave 1, wave 2, etc.) inherent in many
software packages. The interested reader could pursue
the topic of nonlinear modeling with a number of good
reviews,24 –27 including a primer on use of MLM in
longitudinal studies.28 Another guide to MLM with
illustrations from the same database we analyzed, the
NELS:88 study, can be found in a recent review by
Peugh.29
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