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Structura] equation modeling emerged at the confluence of a factor analytic tradi-
tion from psychology and a path analytic tradition from sociology. LISREL’s basic
equations were set up to reflect a measurement model connecting the concepts to
their indicators, following the factor analytic tradition, and a structural model per-
mitting directed effects among the concepts, following the path analytic tradition
(Joreskog & Sorbom, 1976, pp. 1-2). Current structural equation programs un-
avoidably distinguish between observed variables and latent variables (factors or
concepts), but they generally do not mandate the separate or sequential investiga-
tion of the measurement and structural segments of a model. In contrast, the
four-step approach to structural equation modeling highlights the measure-
ment-structural distinction and attempts to assess measurement prior to structure.

Early proponents of separating the measurement segment of a model (which
links the concepts to the observed indicators) from the structural segment of the
model (which links the concepts or factors to one another) included James,
Mulaik, and Brett (1982), Burt (1973, 1976), and Herting and Costner (1985). Not
everyone agreed with the suggestion to estimate a measurement model prior to a
structural model (Hayduk, 1987, pp. 118-123), but the disagreements were not
framed in a way that permitted a focused assessment.

Anderson and Gerbing (1988) explicitly recommended estimating a measure-
ment (factor) model prior to estimating the structural model, but this two-step ap-
proach was countered by a critique by Fornell and Yi (1992a), and comments were
exchanged (Anderson and Gerbing, 1992; Fornell and Yi, 1992b). The two-step
approach survived, and was mildly endorsed by Joreskog (1993, p. 297) and
Joreskog and Sérbom (1993, pp. 113, 128). Hayduk (1996, pp. 36-78) stirred the
embers of the debate by reviewing the prior exchanges and adding several new
points as fuel for the fire. He concluded by recommending against routine use of
the two-step procedure.

The glowing embers of the controversy ignited into flames when Les Hayduk
signed onto the SEMNET discussion group on the Internet and invited discussion
of his 1996 book. Unbeknown to Les, Stan Mulaik, a factor analysis authority, and
long-time advocate of the multistep, was one of the stalwarts of SEMNET. It was
not long before hundreds of pages of discussion had floated around the Net.! The

'The Internet site http://www.gsu.edu/~mkteer/semnet.html provides information on how to join the
SEMNET discussion group and on how to search the SEMNET log of past exchanges/postings.

The initial exchanges between Les and Stan were instigated by Dale and occurred between March 20
and May 17, 1997. A flurry of exchanges occurred after Stan’s posting of 8:23 p.m. on 9/26/97. The dis-
cussion died out in May 1998,

Reference to the SEMNET discussion will be made by author, date, and occasionally by time and ap-
proximate position in long postings. Hayduk 3/20/97 5:30 p.m.-80% refers to comments about 80% of
the way through Les Hayduk’s long 5:30 p.m. posting on March 20, Times may vary a bit because sub-
mit, send, and receipt times are not always identical.

We take the liberty of occasionally addressing Stan and Les by their first names to preserve the spirit
of the friendly academic jousting that pervaded the SEMNET exchanges.
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debate paused for a while when Les withdrew due to other commitments and Stan
was left sighing for not having convinced the opposition. George Marcoulides en-
couraged Les to prepare an encapsulated version of the SEMNET exchanges. This
article gradually emerged parallel to the SEMNET exchanges spanning the fall of
1997 and spring of 1998.

In the following article, we focus on Stan Mulaik’s way of doing the four steps.2
We attempt to preserve both the core and flavor of the SEMNET discussions,
though we move considerably beyond the SEMNET discussion when considering
the root mean square error of approximation (RMSEA) (Browne & Cudeck, 1993)
as a four-step model test. We begin by summarizing the four steps, and follow this
with: a listing of the limitations on the use of the four-step, a discussion of the four
steps’ most fundamental problem, and a consideration of the test and criteria to be
used in moving between the four steps.

THE FOUR STEPS

The four-step procedure attempts to disentangle the reasons for a failing structural
equation model by separating measurement failure from structural/conceptual fail-
ure.? The researcher begins with a base model that reflects the researcher’s best
guess at the nature of the forces operative in the real world. The researcher con-
structs three other models from this base model by relaxing the constraints implicit
in the base model or by adding constraints to that base model.

For any given base model, a less restricted model can be created by replacing
the directed effects between the concepts with a full set of free correla-
tions/covariances between the concepts. This replaces the structural model, which
was a mixture of directed effects, asserted null effects, and correlations among the
exogenous variables, with a full set of undirected covariances/correlations be-
tween all the concepts (see Figure 1). An even less restricted model is obtained by
also adding loadings (lambda’s) to saturate the connections between the concepts
and the indicators, so that each indicator might potentially load on any or all of the
concepts.* The final type of model begins from the base model and adds planned
restrictions (anticipated constraints)—rather than reducing the model constraints.

2This differs somewhat from Anderson and Gerbing’s (1988, 1992) way of doing the two-step, which
was the focus of Hayduk (1996, chap. 2).

3Mulaik 3/20/97 30%, 60%; 4/3/97; 4/4/97; 4/7/97 95%; 4/14/97 1:43 a.m. 80%; 3/23/97 3:50 p.m,;
1/24/98 12:32 p.m.; 3/25/98 1:07 a.m.

4Stan Mulaik recommended permitting all indicators to load on all the concepts but with the excep-
tion that for each concept there should be one indicator that loads only on that concept (Mulaik 4/4/97
1:12 a.m.). Stan did not make this a mandatory feature of doing the four-step, so we treat this as “op-

tional.”




7

m/
Base or e
Step-3
Model
|

Y1 Y2 Y3 Ya ¥s Y6 Y1 ¥s Yo Yio Yit Yiz2 Y13 Y14 Y15 Yis

7 i N4
Step-2 K ‘ Y
- m W /N

Y1 Y2 Y3 Yo ¥s Ye Y1 Ya Yo Yo Y1 Y12 Y13 Y Yis Yie

Step-1
Model

Vi Y2 Y5 Ya ¥5s Yo Y7 Ye Yo YioYu Y12 Y3 Y Yis Yis

FIGURE 1 Constructing the Step-1 and Step-2 models from the base model (Step 3).
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This model is used only if the base model and the less constrained models function
acceptably.

The four-step procedure recommends a sequential testing of the models with
the least restricted model being tested first. The first model tested (the Step-1
model) has as many loadings as possible and is saturated with correlations
(covariances) among the concepts (factors). This model resembles a factor model
employing an oblique rotation. The second model (the Step-2 model) includes
only the anticipated loadings, namely the loadings included in the base model. The
loadings that had been added merely to create the first-step model are now fixed at
zero, but the saturated covariances among the concepts are retained. This makes
the second model a confirmatory factor model in that specific items are located un-
der specific factors/concepts, while the factors remain interconnected by all their
possible correlations.

The third model replaces the factor correlations/covariances with the antici-
pated directed effects and specified absences of effects, among the concepts,
though some correlations among the exogenous concepts may remain. This Step-3
model is the base model that is the researcher’s prime focus.

So saturating the concepts’ interrelations with correlations or covariances takes
us from the base (Step-3) model to the Step-2 model, and adding loadings span-
ning the item range gets us to the Step-1 model.

If all these models have gone well, a fourth step might place additional con-
straints on the base model to examine whether some of the parameters in the
third-step base model are unnecessary, equal, or significantly different from spe-
cific values. Step 4 may address questions of substantial research interest, but the
variability in the types of constraints entered to get from the Step-3 to the Step-4
model (fixed zero, fixed nonzero, equality or proportionality constraints, in any
number and combination) renders Step-4 models too diverse for useful generaliza-
tions, so our comments focus on the first three of the four steps.’

These steps are intended to provide a nested series of models, where the nesting
is supposed to pinpoint problems with the base model. If the base model is the
proper model, the first three steps should all proceed smoothly and with acceptable
model fit. Models fail only when they impose unwarranted constraints, and be-
cause the models used at the first and second steps are less constraining than the
third step (base model), these models should all fit well if the base (third-step)
model is the correct model.

If the base model is incorrect, the nature of the failings in the base model are
supposed to be located as purely structural if the Step-1 and -2 models fit while the
Step-3 model fails. The failings are supposed to be failures of measurement if the

3Steps 2,3, and 4 are the James, Mulaik, and Brett (1982) three-step approach, and Step 1 is a straight-
forward extension to an exploratory factor analysis model. On what the steps are, see Mulaik 3/20/97
25%, 3/23/97 3:50 p.m., and Hayduk 3/27/98.
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Step-1 model fails, or if both the Step-1 and -2 models fail. Failure of the first-step
model is supposed to indicate the model contains too few concepts, and hence the
measurement of the concepts is called into question. Fit at Step-1 followed by fail-
ure at Step-2 is supposed to indicate that one has the proper number of concepts,
but that some adjustment to the identity of the concepts, via the addition of load-
ings, is required.

If at any step the model fails to fit the data, the researcher should stop and not go
on to the later steps until the problems with the current model are resolved.6 The
later models are more constrained than the current, and now failing, model so all
the later models would also fail.

So the researcher loosens the structural constraints by replacing the anticipated
directed and null effects among the concepts in the base model with a full set of
free concept covariances, and thereby comes to know whether the structural model
is problematic. Similarly, one loosens the constraints on the measurement model,
by replacing the theoretically specified loadings of the indicators on the concepts
with a full set of free loadings, thereby locating whether the measurement segment
of the model is problematic.

Think of the above as a medicine man’s sales pitch. Before we buy the potion
we should ask whether we are suffering from an illness the potion is supposed to
cure, and whether there is evidence of any curative power for whatever illness the
potion does claim to cure. So, for what types of models might the four-step proce-
dure not be appropriate, and among those where it is claimed appropriate, can it do
what it claims it is able to do?

RANGE OF APPLICABILITY

First, the four-step procedure is appropriate only for researchers having a base
nodel. If one is merely exploring, the procedure can’t be used. Similarly, if one has
1 base model that is saturated with effects among the concepts, the procedure will
10t be able to separate measurement from structural concerns because the Step-2
ind Step-3 models will provide identical fit statistics. The researcher must start
with a real and nontrivial structural model.

Second, to do things Stan’s way, there must be at least four indicators for each
>f the concepts in the model.” This means that the four-step procedure cannot be
1sed if the model contains variables like sex, age, income, or education, or any
:oncept with a single indicator. This is a severe restriction on the applicability of
'he four-step procedure because most models contain at least one concept having
‘ewer than four indicators.

*Mulaik 3/20/97 15%, 4/22/97 9:20 p.m. and 3/23/97 3:50 p-m.
"Mulaik 3/20/97 9:35 p.m. 40%, 3/24/97 3:05 p.m. 15%, 4/14/97 1:43 a.m. 80%, 5/17/97 5:42,
2/22/98 9:41 p.m. See also James, Mulaik, and Brett (1982, p. 164).
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Why does Stan make “at least four indicators per concept” a mandatory part
of the four-step process? He feels the meaning of a concept is unclear until that
concept has at least four indicators.? This also helps to ensure that the Step-1
model is identified. The coefficients in a model containing a single factor with
three indicators are identified, while a single factor with four indicators provides
both identified measurement coefficients and some testing power. Hayduk
(1996, pp. 25-30) discusses a procedure that results in specified meanings with
single indicators, and identified loading estimates and measurement tests with
two indicators, so we believe that Stan is being overly restrictive in demanding
four indicators per concept.? But rather than trying to persuade Stan of this in the
current context, we will obligingly accept Stan’s minimum of four indicators per
concept, and thereby exclude many models from ever being subjected to the
four-step procedure.

A third limitation comes from observing that, if a model has many indicators
per concept, that model must contain fewer concepts if the model is to remain prac-
ticable and if the model is to be estimated using a reasonable sample size. Using
many indicators unintentionally, but importantly, limits the structural sparseness
that the model can display, and structural sparseness is a feature cherished by both
Stan and Les.!0 If there are only two concepts in a model, a single structural effect

8Mulaik 3/20/97 35%, 4/16/97 3:35 a.m. 20%, 4/16/97 5:55 p.m., 5/17/97 5:42 p.m., and 1/24/98
12:32 p.m.

See Hayduk’s 4/15/97 5:36 p.m. 90% discussion of how a single variable like sex can correspond to
different concepts (sex as chromosomal complement, as hormonal levels, as label applied by others, as
self-identification, and so on) and how one can differentiate between these concepts with different error
specifications. Hayduk (1996, pp. 25-30) argues that by asserting a clear meaning for the first indicator
(via assigning a fixed 1.0 loading and a fixed measurement etror variance), while the second and subse-
quent indicators are provided free loadings and error variances, one achieves some testing ability (as-
suming the model has more than a single concept).

The coefficients for second and later indicators are estimable under this procedure. So in order to de-
fend the “requirement” of four indicators per concept, Stan is in a position of having to argue that
uniquely identified measurement estimates are somehow possible despite ambiguous or insufficiently
determined conceptual meaning. Stan must also explain why or how conceptual meaning can remain
ambiguous despite the contributions of the second and third indicators to the model chi-square and its
degrees of freedom. We see no justification for such claims, and hence feel that two indicators are suffi-
cient to initiate the testing of the conceptual and measurement structures if the first indicator has been
modeled with the fixed loading and error variance procedure recommended by Hayduk (1996). The first
indicator asserts a specific meaning, and all subsequent indicators test the asserted meaning.

Stan and Les agree that use of scales summing several items clustering under one factor is
unadvisable (Hayduk 3/20/97 5:47 p.m. 95%, Mulaik 3/20/97 9:35 p.m. 95%), so scales are not a point
of contention between us.

10 Sparseness comes from making potentially “falsifiable” assertions of null effects between con-
cepts, zero-error variances and covariances, proportionality constraints, and fixed nonzero coefficients.
Les and Stan agreed that, from the perspective of checking out the theoretically postulated model, such
assertions are at least as important to a theory as are the theory’s predicted effects (Mulaik 3/31/97;
Hayduk, 3/31/97, 4/6/97 60%); see Hayduk (1996, pp. 7-19).
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linking those two concepts saturates the structural part of the model.!! It takes at
least two effects to interconnect three concepts, so a researcher can have only one
degree of structural freedom with three theoretically connected concepts.!2 It takes
three effects to interconnect four concepts, so models with four connected con-
cepts have at most three degrees of structural freedom. Models with five or six
concepts can have reasonable structural sparseness, if the connections between the
concepts are minimal, but most models do not have minimal interconnections, so
in practice one is usually confronting models with seven or more concepts before
there is a substantial degree of structural sparseness.

With 10 indicators per concept, models with 7 or 8 concepts are big, and they
require substantial sample sizes to support them. This leaves four-step advocates
desirous of structural sparseness with a difficult choice. Either they can strive for
relatively few indicators per concept, that is, stay close to four indicators per con-
cept, or doom themselves to collecting huge samples and building huge models in
order to gain even a moderate degree of structural-theoretical sparseness. There is
little sense in stressing the four-step’s ability to separate measurement from struc-
tural concerns if the structural part of the model is nearing saturation.

THE AILING CURATIVE POWERS OF THE FOUR-STEP
Locating the Proper Number of Factors/Concepts

Can the first of the four steps determine whether or not the base model contains the
proper number of concepts? Both the measurement and structural parts of a model
are fundamentally wrong if the base model contains the wrong concepts, so there is
little sense in attempting to separate measurement from structural problems (the
main goal of the four-step) until one has located the proper number of concepts.
It is the first of the four steps that must determine the number of concepts/factors,
becauseall the later steps become untrustworthy if they are contaminated byinclusion

' With only two concepts, the researcher is forced to choose between theoretically disconnected con-
cepts (no causal connection between them), or a single connection that permits the concepts to appear as
“connected parts of some theory” but that also saturates the structural part of the model and renders it
nontestable. Saturated structural models are not testable because they provide the same fit as does a full
set of covariances among the concepts. This makes the fit of the Step-2 and Step-3 models identical, and
hence uninformative.

A saturated structural model might make it seem like the only kind of error is measurement
misspecification, but this is not the case. If the true structural model is composed of a sparse set of effects
among more than the modeled number of concepts, there is both measurement and structural
misspecification despite the saturated structural model. This is explored more fully in this article in the
discussion of the proper number of concepts.

"2Three concept covariances minus two estimated effects leaves one degree for freedom, from the
fixed null effect, with which to test the structural model. We ignore possible equality constraints as these
do not alter the gist of the point being made here.
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of the wrong concepts. This leads to an obvious question: Does the fit or failure of the
first-step model report on whether the model contains the proper number of fac-
tors/concepts? Stan repeatedly asserted that Step 1 is capable of doing this, though his
resolve fluctuated during the spring of 1998.13 For a variety of reasons, we continue to
doubt whether Step 1 can be trusted to locate the proper number of concepts.

The first way of questioning this arises from noting that several factor models
can all fit to a single data set. Imagine a model for which multiple indicators are re-
sponsive to four underlying concepts in the real world. Imagine also that we try to
fit Step-1 (ordinary factor) models with 1, 2, 3, 4, 5, or 6 factors to the observed
covariance data. The models with one, two, or three factors should fail because
they are unable to reproduce the input covariance matrix. The four-factor model
should adequately reproduce the covariance matrix, and hence should fit. The fac-
tor models with five or six factors should also reproduce the covariance matrix and
hence should also fit.!4

This creates a problem for the four-step. If the base model, namely the re-
searcher’s best guess at the real world, included four or five or six factors, the cor-
responding Step-1 models would fit even though only one of these could contain
the proper number of factors. So the researcher would be unjustifiably proceeding
to the later steps in two of the three instances. If the base model postulated five
concepts, and if a model with five concepts fits at Step 1, how can we move ahead
assured that we have the proper number of factors, given that Step-1 models with
four and six concepts can also fit? Because there is only one possible correct num-

13“This allows one to test whether one has the correct number of latent variables without confounding
that test with the specification of relations between specific latent variables and specific manifest
indictors” (Mulaik 3/23/97 3:50 p.m.). And, “what you can test in an exploratory factor analysis is the
number of factors” (Mulaik 3/27/97 11:28 p.m.) and “my first step test of the number of factors” (Mulaik
4/11/97 10:35 p.m.). “How would factor analysis lead you to have the wrong number of concepts at
Step-1? You are using factor analysis to test your hypothesis about the number of factors or latent vari-
ables at this step” (Mulaik 4/4/97 1:12 p.m.).

In considering fit at Step 1, fail at Step 2, should one go back and try a model with more factors instead
of the number that did work with an exploratory factor analysis that lets each factor span all the items?
Stan thought, no, “... if you had to back track later on in Step-2 with modification indices leading you to
free up a few of the zero loadings, you would still not have the worry that you had the number of factors
wrong” (Mulaik 4/4/97 1:12 a.m.).

See also 4/14/97 1:43 a.m., p. 7, and the discussions between 4/18/98 and 2/27/98, on the hypothesis
for Step 1.

Stan’s postings 0f4/7/97 5:16 p.m. and 2/22/98 9:41 p.m. permit that any number of factors above
the minimum should fit, up to the number that lead to an underidentified model. He also permits that
the researcher may have hypothesized some number other than the minimum. Using progressively
more factors would ultimately lead to an underidentified Step-1 model (Mulaik 2/22/98 9:41 p.m.)
with the highest number of identified factors, depending on the number of observed variables and
other things. But our concern is not with the location of the identification limit. We are questioning the
logic of the testing process for whatever models are below that limit, wherever it might be (Hayduk

2/20/98 2:09 p.m.).
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ber, any Step-1 test permitting acceptable fit with more than one number of factors
is problematic for the four-step.!5

One way to solve this problem is to demonstrate that the minimum fitting num-
ber of factors is the proper number of concepts. Stan began by exploring, then re-
Jecting, then wavering, on the idea that the minimum number is likely to be the
proper number.!6 Starting with one factor and then adding one factor at a time until
the first good fit is achieved, or starting with many factors and then subtracting one
factor at a time until just prior to failure, locates the minimum number of factors.
Unfortunately, there is nothing that assures us that the minimum number is the
proper number of factors. 17

In fact, we suspect the minimum number of factors is likely to be the wrong
number. This is because the coefficients freed in moving from the base model (the
researcher’s best guess at the real-world “model”) to the Step-1 model, can work
as fitness—Band-Aids that hide the bleeding (ill fit) created by cutting out a factor
or two. A real-world “model” with k sparsely connected concepts can be fit by a
factor model with fewer than k factors if that factor model contains a bunch of co-
efficients not required by the real world—recall the many coefficients added to get
from the base model to the Step-1 model. The estimates of the unnecessary coeffi-
cients are free to be adjusted to counteract whatever il fit was created by amputat-
ing a factor or two. A factor model with too few factors can provide an adequate fit
ifitis stitched together with a full set of free concept covariances (Step 2), and ban-
daged with a set of free factor loadings (Step 1) that keep us from seeing the bleed-
ing model.!8

There is no available proof that guarantees that the minimum number of fitting
factors locates the true number of concepts if the true model is of any of the thou-
sands of styles of nonfactor “models” that might comprise the real world,
hopefully, but not necessarily, represented by the base model.! Stan provided
some factor analysis mathematics as proof'that Step 1 locates the proper number of

!*See Hayduk 5/14/97 12:34 p.m., and the exchanges of 5/16/97.

'*Contrast Mulaik 3/24/97 3:05 p.m. and 3/26/97 4:37 p.m. with Mulaik 4/16/97 3:35 a.m. 70% and
90%, 4/16/97 5:21 p.m., 4/17/97 3:40 p.m., 4/17/97 11:55 p.m., and 4/28/98 12:47 a.m.

"Parsimony has been used as a justification for use of few factors, but models with many more, but
sparsely connected, factors can be as sparse as ordinary loading—obese factor models, so some other de-
fense is required (Hayduk 4/5/97, 11:19 p.m. 40%, 2/24/98 2:59 p.m.).

"¥This is demonstrated in the series of SEMNET postings that culminated in the Simplex+8.2 model as
presented in Hayduk 2/26/98 7:22 p.m., which we summarize below. See also Hayduk 5/16/97 1:37 p.m.

""There was considerable SEMNET discussion of the connection between the minimum number of
factors and parsimony. Stan contended that the fewer the factors, the more parsimonious the model. Les
countered by observing that this is a model-biased view. Models with more but sparsely interconnected
concepts can be as parsimonious as, or even more parsimonious than, models with fewer factors and
many loadings. Les does not recognize the factor model as “the standard model” and hence is free to ac-
knowledge that models with more but sparsely interconnected concepts can be wonderfully parsimoni-
ous. See the exchanges between Les and Stan of 3/24/98 and 3/25/98 on the bloody mess that can be cre-
ated by wielding Occam’s power-razor (chainsaw).
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factors, so we feel obliged to address why this is unconvincing. The basic defi-
ciency is not in the mathematics?? but in a key assumption that goes into the mathe-
matics, namely that the true or proper model underlying the analysis is a factor
model. That is, the math assumes that the only thing that needs to be fested is the
number of factors to include, not whether the factor model is the proper model to
use.2! This point resurfaced when Stan?? quoted Jéreskog on the chi-square test for
the Step-1 factor model:

In the preceding sections we have treated the problem as if the number of common
factors k was given in advance. ... Ifit is possible to specify a certain value k, we could
test the hypothesis k=k; against the alternatives k>k;. ... If the model is proper for the
relevant data and if the hypothesis is true, then the p-k, smallest latent roots of Z* are
equal. (Joreskog, 1962, p. 347, italics added)

20The math appeared in Mulaik, 5/16/97 2:35 a.m., but see also Mulaik, 12/19/97 4:04 p.m., 12/24/97
2:21 p.m., 1/5/98 9:54 p.m., 1/12/98 9:49 p.m., and 4/23/98 6:34 p.m. The proof corresponds closely to
that provided by Joreskog (1967, pp. 445-449).

Stan began with a covariance matrix modeled with m orthogonal factors having loading matrix F, so
that

C=FF +1?
where U is a diagonal error variance matrix. (This parallels equation 4-30 of Hayduk, 1987, with
uncorrelated factors and uncorrelated errors.) Dividing by the appropriate error standard deviations
(U) twice provides

U!'CUt=U-'FFU' + L
Using the eigenvector matrix of the left side, (A) provides a diagonal matrix on the left, and hence
the A"U-'FF'U-'A matrix on the right of

AU'CU'A=AU'FFA +1
is also diagonal. (Eigenvectors may be scaled so that the sum of the squared vector values equals 1.0
by convention. Thus A'IA = A’A = I. Compare this with J6reskog [1967], equation 15.) Because the
matrix containing FF’ has at most as many nonzero eigenvalues as there are factors defining the col-
umns of F, examining the eigenvalues of the matrix on the left to see which are greater than 1.0
should locate the number of factors, because the remaining eigenvalues must all equal 1.0 if the
above equation is to hold.

After permitting sampling fluctuations, and linking the test of model fit to a test of equal remaining
eigenvalues, Stan concluded that if m is the selected number of factors ... and if m" is the ‘true’ number
of common factors, then the probability that m > m” is equal to or less than the significance level of the
tests. So, this suggests that if you use a small p value for your significance level, you are less likely to ex-
tract too many factors. This says nothing about whether you will take too few. But I think you will with
small p. Nevertheless, with large sample sizes, you will be able to detect small departures from equality
for the residual eigenvalues. And this will lead you to taking many factors, although many of them may
be of minor importance because they contribute so little to the common variance” (Mulaik 5/16/97).

Stan’s concluding comments acknowledge that, despite the proof, even he feels the researcher may
end up taking “two few” factors. This is a direct statement that acceptable factor analytic fit can be
achieved with the wrong number of factors. Specifically, the researcher is more likely to err on the side
of having too few, rather than too many, factors. (Continued)
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This makes it clear that the hypothesis for the chi-square test is the number of
factors ky versus its alternatives, and that this is not a test of the veracity of the ba-
sic factor model in which k is found. That is, the Step-1 factor model test assumes
the basic form of the model is correct; it does not fest whether this factor form is
correct. The researcher who believes in the base model that is transformed into the
Step-1 factor model hopes that the Step-1 model contains the appropriate number
of factors and hopes the factor model is appropriate, but they need to zest both these
hopes. It is precisely because the veracity of the basic factor model is not tested by
the chi-square test that Stan’s proof is unable to defend the four-step.23

This point is sufficiently fundamental that we will illustrate that factor models
can indeed fit with the wrong number of factors/concepts by considering two ex-
amples that were discussed on SEMNET: one real example and one hypothetical
example.

The real example arises from a data set in which the failure of a factor model
shocked one of us (Les Hayduk). Les had imbedded 10 measures of people’s per-
sonal space preferences (minimum comfortable interaction distance) within an ex-
periment. Numerous other spatial measurements had monitored the treatment
effects, and these 10 measurements were placed throughout the experiment to serve
as pure replicate measures under null-treatments.2¢ The data were collected in the
earnest belief that a single underlying factor, namely each person’s basic spatial
preference, was being repeatedly measured. This preference was conceptualized as
the baseline spatial preference against which Les could judge whether or not the ex-
perimental treatments were having any effects. The experimental setting resulted in
a small sample size but permitted control of many potential sources of error.25

".I'he correlations among the 10 indicators were strong (averaging .84) and reas-
suring. Unfortunately, the one-factor model failed to fit the data. The failure of the
one-factor model shocked Les, because to admit even two factors seemed incon-
ceivable. It seemed there had to be one factor. If there was no “thing” being tapped

o ’;(.cl'fmtin.ued). \:Ve can appreciate that small sample sizes might permit real but small differences in
¢ tatling eigenvalues to go undetected, but there are more fundamental f ioni i
as indicated in the body of the text. meysoluestionn thisproof
YHayduk 5/16/97 1:37 p.m.
ZMulaik 4/23/98 6:34 p.m.
3The SEMNET discussions between 4/20/98 and 4/28/98 highlighted the difference between testing
th.c number of factors that ar.e sufficient to make a factor model fit, and testing whether the factor model
with any number of factors is the proper model. The factor model test examines only the first of these
andyleaves untested whether the factor model is the proper model. ’
. 'More of the cont?xt is provided in Hayduk (1996, pp. 97-100) and the relevant methodological de-
;a:;l; and data appear in Hayduk (1985). The correlation matrix was also provided in Hayduk 1/27/98
:47 p.m,
2’Trying.to rebut tl.w point being made here by emphasizing the smallness of Nis a tangent because
tpc proof fails even with a fictitious counter example. We could merely postulate that the same correla-
tions appeared with an arbitrarily larger N, and our point would remain the same.

R ——
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by the replicate measurements, the idea that the experimental treatments effected
“that thing” was in jeopardy.

The eigenvalues for the correlation matrix are 8.76, .60, .21, .13, .10, .07, .05,
.04, .02, .01, and attempting to fit ordinary factor models?6 results in failure with a
single factor, X2= 69, df =35, p = .0005; failure with two factors, 2 =40, df=26, p
= .04; fit?7 with three factors, x2 = 23, df = 18, p = .16; and nonconvergence or
underidentification with four or more factors. So from the factor analysis perspec-
tive, it seems that two factors were not quite enough, three were sufficient, and
more were impossible.

Unfortunately, the proper number of factors in this instance is probably 10, not
3. We know this because there is a pattern in the correlations. The indicator corre-
lations are higher near the diagonal and decline progressively for correlations fur-
ther from the diagonal.28

The significance of the pattern initially escaped Les, and the failure of the factor
model led him toreexamine the experimental design. This reconsideration led to an al-
ternative model with 10 concepts imbedded in a straight-line causal chain. In this
model the participants’ spatial preferences at any time are modeled as causally re-
sponding only to their immediately prior spatial preferences. This simplex model is
identified,”® demands declining correlations for more widely separated observa-
tions,*® and in retrospect makes excellent sense as a dynamic spatial preference
(Hayduk, 1994). The spatial preferences for the participants were changing from mo-
menttomoment, even though those preferences remained highly correlated because at
any one moment they were strongly dependent on the preferences amoment earlier.3!

%In 1985 Les considered only a single factor and used some nontraditional specifications. Dr. N. M.
Lalu kindly ran these factor analyses using SPSS specifically for this paper.

% Adopting Stan’s p < .05 fit criterion for the moment.

3Stan’s proof is silent with respect to patterns in the data matrix. There is nothing in this proof that
lets us do anything different about determining the proper number of factors as a result of this specific
data pattern, or as aresult of any of the hundreds of less obvious patterns we point to shortly. Stan’s proof
places no constraints on the data matrix, other than that it be a correlation—covariance matrix for items
gathered “in good faith” as indicators of some factor(s)/concept(s). Les had the faith; walked the multi-
ple-indicator methodological walk; and was shocked, devastated, and even sent into temporary denial
when the factor model failed.

Pointing out that there was an overlooked data feature does not excuse the factor model’s failure to lo-
cate the proper number of factors. What s of concern is that Stan’s proof does not ask for or permit addi-
tional evidence. It does not suggest that any kind of evidence whatever could stand against the proof. In
this instance, the researcher’s diligent seeking of, and belief in, a single factor, the high correlations, and
the small trailing eigenvalues that would probably take a sample in the thousands to detect as unequal,
are all in accord with the requirements of the proof, and everything seems to be OK—everything, that is,
except the conclusion.

With fixed nonzero thetas, as explained in Hayduk (1985).

3L es did not initially appreciate the significance of noting that this pattern is demanded by a simplex
model, whereas this and many other patterns can be well approximated by a three-factor model.

3!See Hayduk (1985, 1994, 1996, pp. 97-101) for discussion of this. :
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What does this tell us about a Step-1 factor model? If the failure of the
one-factor model had merely led to trying a two-factor and then three-factor
model, Les would have ended up claiming that the data contained 3 factors, which
is well below the 10 concepts that are probably there. The really bad news is that
the identified model with three factors fits acceptably. How can a model with 3 fac-
tors fit acceptably when the real world has 10 factors/concepts? Something has
gone drastically wrong, despite Stan’s proof. The problem seems to be that the real
world has many concepts connected by few effects, while the factor model posits
relatively few concepts having many effects.

Before we consider this further, though, it is important to note that this failure is
not unique to this specific data set, nor is it attached to the straight-line simplex
model with its characteristic correlation pattern. There are many real-world mod-
els that can similarly result in a factor model fitting with fewer than the proper
number of concepts. In the SEMNET discussions, Les constructed a series of hy-
pothetical models (the SimplexPLUS models) that added effects into a basic
straight-line simplex model, and thereby progressively transformed the simplex
model into other models that came to resemble ordinary recursive models. The
Simplex+8.2 model, for example, adds eight effects onto a simplex backbone, and
its correlation matrix does not display an obvious simplex pattern.32 There are 10
concepts in the Simplex+8.2 model, yet a factor model fits with only 3 common
factors.33

The personal space example illustrates that there are real instances of models
that fit with too few factors, and the series of hypothetical SimplexPLUS examples
demonstrate that there are potentially hundreds of covariance matrices from ordi-
nary recursive models that can be mistakenly fit by too few factors.

The correlation matrices for the SimplexPLUS series of models progressively
lose the telltale correlation pattern, but these matrices continue to have large initial

*The discussion of the SimplexPLUS models began with Hayduk 1/26/98, was formalized in
Hayduk 2/14/98, and took its most helpful form in the context of the Simplex+8.2 model of Hayduk
2/26/98 7:22 p.m. The Simplex+8.2 model is created to have a backbone of 10 concepts connected in a
straight causal line (with all effects .8). The first concept has additional .3 effects leading to concepts 3 to
10. The first concept has variance 1.0 and each of the other concepts has a structural error of .15. Each of
the 10 single indicators has a .25 measurement error variance. This specification results in a recursive
model whose correlation matrix is

1.0

.70 1.0

72 .73 1.0

73 .72..79 1.0

.74 .70 .76 .82 1.0

.75 .70 .75 .80 .83 1.0

.76 .70 .74 .77 .81 .85 1.0

.77 69 .73 .76 .79 .83 .86 1.0

77 .69 .72 .75 .78 .80 .83 .86 1.0

33Mulaik 3/21/98 9:09 p.m.
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eigenvalues and small trailing eigenvalues that drive the chi-square test for Step
1.3* What is not obvious is that the eigenvalues are acting in consort with a hidden
accomplice, namely the unnecessarily free coefficients in the “unquestioned” fac-
tor model. Let us look at this from the perspective of saturated models.

A saturated model (factor or otherwise) guarantees that the model will fit by be-
ing able to exactly reproduce the observed covariance matrix. Saturated models fit,
not because the number of factors/concepts or anything else about the model is
right, but because of the number of free, and possibly needlessly free, loadings/co-
efficients attached to the factors are sufficient for reproducing the data. The rele-
vant issue here is, does deleting one loading from a saturated factor model lead to a
large and significant chi-square ill fit if the true real-world model has more than the
saturating number of factors? The answer is clearly no, it will not. The chi-square
fit will only slowly decline with each lost loading, because the remaining loadings,
even if misspecified or useless in the sense of not corresponding to effects in the
real world, still manage to imply covariances that match the data fairly well.

The extra coefficients added to turn a sparse structural model into a full set of
concept covariances, and the extra coefficients added to convert focused loadings
into loadings spanning a wider range of items, are like fitness—Band-Aids that can
obscure the hemorrhaging (ill fit) created by having too few factors/concepts in the
base model.35 Too few factors, assisted by all the unnecessary coefficients added
to create the Step-1 factor model, may lead to passing the Step-1 fit test, even
though the real-world “model” has more factors/concepts with fewer loadings and
fewer structural effects.

What the four-step is lacking, and may forever lack, is a demonstration that the
coefficients freed in getting to the Step-1 factor model are not hindering the assess-
ment of the number of factors/concepts. We see the hindering nature of these coef-
ficients (the extra loadings and free concept covariances) when they take a
perfectly good 10-concept model and render it underidentified as a 10-factor

3For example, see Mulaik 2/18/98, 3/9/98. Stan reported that the eigenvalues of U-'CU-! for the Sim-
plex+8.2 correlation matrix are all greater than 1.0 when the true error variances are used, just as the
proof requires. The trailing eigenvalues are close to 1.0 and could easily lead to five of the eigenvalues
being discounted. But again, the problem with Stan’s proof does not seem to be in the mathematics of the
eigenvalues.

3“Without the structural model to constrain the factor covariances, the freely floating factor
covariances are a sponge that can absorb some slack in ‘the wrong number of factors’ at Step-1”
(Hayduk 5/9/97 1:48 p.m.). “I am arguing that, if the real world places constraints on the factor
covariances, and the Step-1 model does not have those constraints in place, then we can have made a
wrong decision about the number of factors because of the lack of those constraints” (Hayduk 5/12/97
12:04 p.m.). See also Hayduk 4/3/97 6:11 p.m.

Stan’s general position was that it would be impossible for a five-factor model to produce an accept-
able fit if the real world contained six concepts and a sparse set of coefficients (see two Mulaik postings
of 5/13/97). But also see “So, at any step there is the possibility that we have taken too few factors”
(Mulaik as quoted in Hayduk 5/12/97 12:04 p.m.).
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model.?$ We should see the similarly hindering nature of the unnecessarily free co-
efficients when the factor model is identified but padded well enough to keep us
from feeling the pinch of having only 3 factors instead of 10 concepts.

A proof relevant to the four-step procedure would require that one can start with
any real-world model whatever (the Step-3 base model being the researcher’s best
guess at this), and still have the Step-1 factor model created by adding multiple
anticipatedly useless coefficients (the extra loadings and free concept covariances)
nonetheless provide a definitive statement of whether the base model does or does
not contain the proper number of concepts.

Unfortunately the researcher has no way of knowing when a bunch of unneces-
sary loadings are unjustifiably providing large initial eigenvalues that can lead
them astray by providing an acceptable chi-square. Any given set of indicators
might be reflecting multiple interconnected concepts, despite the researcher’s best
efforts and intentions, and despite even the power of experimental controls. Yes,
we can do our best at locating multiple indicators (Les did), and yes we may even
account for most of the item covariances with a few factors (three factors explain
96% of the common variance in the personal space measures),37 but we can still
have a wildly wrong number of factors/concepts. Three factors are not even close
to the 10 that provided the Simplex+8.2 data, or the 10 that most sensibly match
with the personal space data. Unfortunately, the researcher usually has no way of
knowing if this is happening or not, and hence even with acceptable fit at Step 1 the
researcher might be proceeding to Step 2 with the wrong number of concepts.

%And similarly, we see it when the freed coefficients render models with 9, 8, 7, and 6 concepts
underidentified as factor models with 10 indicators.

#'The argument that larger eigenvalues correspond to more “important” factors became central after
the Mulaik posting of 4/11/97 8:39 p.m. This is connected to the discussion of whether one should test
exact model fit or approximate model fit (see the discussion of the RMSEA below). The connection be-
tween eigenvalue and importance was examined in the SEMNET exchanges following Hayduk 2/18/98

10:52 a.m. Itbecame clear that the eigenvalues for simplex models do not correspond in “importance” to
the concepts, but at “best” they correspond to the errors on the concepts. This has the unsettling conse-
quence of claiming that eigenvalues find “well explained endogenous concepts” to be unimportant and
unworthy of being retained in the models.

Another approach to seeing that eigenvalues need not correspond to, “importance” can be attained
from considering a circumplex model, which is like a straight-line simplex except that the final concept
influences the first, so the model becomes a circle of effects. A circumplex of 10 concepts with equal ef-
fects and equal errors is composed of 10 identically important concepts, no matter how one defines im-
portance. Unfortunately, the cigenvalues for a covariance matrix created from such a model will show
the characteristic pattern of large initial eigenvalues tapering off to near zero values. This demonstrates
that both large and small eigenvalues may not indicate importance, because all the concepts in the model
are of equal importance.

These observations contradict the factor-analytic idea that the smallness of trailing eigenvalues
makes subsequent factors “of minor importance because they contribute so little to the common vari-
ance,” as Stan put it, but this is a tangent in the context of the four-step, and so we do not pursue this.
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This is a failing from which the four-step procedure is unlikely to recover. Step
2 is unlikely to force any acknowledgment that the researcher has the wrong num-
ber of concepts. If the Step-1 model fits and the Step-2 model fails, the researcher
can merely reinsert some of the loadings that had been deleted in moving from the
Step-1 model to the Step-2 model, and the Step-2 model will fit without readjust-
ing the number of concepts.38 Similarly, ill fit at Step 3 can be counteracted by add-
ing in a few more structural effects, and the researcher again will not be prompted
to seriously requestion whether they have the proper number of factors.

Yes, we could question whether we have the proper number of concepts at fail-
ing Step 2 or Step 3 even after observing a well-fit Step 1. In fact we should do this.
We should be willing to requestion the number of factors despite a fitting Step-1
model. But the four-step proponents will not be able to tell us to keep reconsidering
whether we have the proper number of concepts at Step 2 and Step 3, without ques-
tioning the utility of the four-step procedure itself. If we are not assured of having
the proper number of concepts, then the measurement issues have not been settled
even by Step 3.

The consequence of this is that we are lacking precisely the benefit the four-step
was supposed to provide, namely a clear statement of whether a failing Step-3
model has measurement problems or structural problems. The measurement con-
cerns, in the guise of a dubious number of concepts, linger all the way back to the
Step-3 model. The absorbent Band-Aids provided by the freeing of the coefficients
during the formation of the Step-1 and Step-2 models actively obstruct any deter-
mination of whether the base model contains the proper number of concepts.39

Another way to approach the question of whether Step 1 determines the proper
number of factors is to consider whether a fitting model can be the wrong model. A
SEM truism states that a good fit is insufficient to conclude that the model is the
correct model. If we apply this truism to the Step-1 model, this claims that the
Step-1 model can fit with & factors but that this is still the wrong model. So either
we can have fit with the wrong number of factors/concepts, or we have an instance

38Stan thought that “if you had to back track later on in Step-2 with modification indices leading you
to free up a few of the zero loadings, you would still not have the worry that you had the number of fac-
tors wrong” (Mulaik 4/4/97 1:12 a.m.).

30One might consider trying to solve the problem of the Step-1 model fitting because of capitalization
on unnecessary yet free coefficients by adjusting the test of the Step-1 model’s fit for the number of ex-
cess coefficients in the model. Unfortunately, for the four-step advocates, this constitutes a direct dis-
mantling of the four-step because this requires incorporation of knowledge of the base model to create
the adjustment. This reintroduces aspects of the base model into decisions about measurement, which
the four-step advocates are trying to avoid.

From the perspective of those not committed to the four-step, it would seem reasonable not only to
use the number of excess estimated coefficients in adjusting the Step-1 model test, but also to include the
actual model locations of the unnecessary coefficients. This takes us right back to the base model, so we
might as well just use the entire base model, and routinely consider a possibly incorrect number of fac-
tors as one of the reasons the base model might fail.
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where, contrary to the truism, acceptable fit does mean one has located the correct
model. We see no reason to grant that moving toward the factor model provides a
way of gaining indubitably trustworthy knowledge.

The consequence of the preceding is that the Step-1 test does not reliably deter-
mine whether the researcher’s model contains the proper number of concepts. It
merely tests whether the researcher’s best guess at a model, the base model,
propped up by a bunch of coefficient-protheses here, and held together by a bunch
of coefficient-stitches there, might be fit enough to be carried out of the emergency
room (Step 1) and onto the next station. If the emergency room can’t reattach the
missing appendages (concepts) then it is unlikely they will regenerate while the
patient/model lies in the next ward (Steps 2 or 3).

The inability ofthe factor model to convincingly locate the true number of factors
is not a problem that is unique to the four-step procedure. It is a problem that arises
whenever a factor model is tested in lieu of a real-world model having more con-
cepts. The above arguments explicitly critique factor-analytic determinations of the
true number of factors by splitting the academic hair separating a “test of the number
offactorsin an assumed factor model” from a “test of the assumed factormodel.”

Now, onward and downward to another set of four-step problems.

Structural Effects, Fixed Measurement Errors, and the
Proper Factors

Imagine that a researcher believes there is a gold-standard indicator of some con-
cept, so that the concept must have a specific close connection to that indicator if the
concept is to be the concept/factor the researcher wants in his or her model. The re-
searcher’s base model includes this indicator, along with other indicators of the
concept, and the researcher uses the fixed 1.0 loading (lambda) and fixed corre-
sponding measurement error variance (theta) procedure for the golden indicator as
discussed by Hayduk (1996, pp. 25-30).

The first use of the fixed measurement error variance (theta) cannot be at Step 3
of the four-step because the fixed theta seems to be a measurement concern, and
measurement concerns are supposed to have been determined at Steps 1 and 2. If
the fixed theta is entered at Step 1, this fixed value may contribute to model failure
because the gold-standard indicator does not in fact share only a single con-
cept/factor with the other weaker indicators. There may be some single factor that
might fit with all the indicators, but that factor is not the factor/concept the re-
searcher wants, because it is not sufficiently closely connected to the
gold-standard indicator.

The problem with inserting a fixed theta at Step 1, from the perspective of a
four-step advocate, is that Step 1 would now be testing something other than just
the number of factors. Fit would hinge on a specific factor having an identity closer
to that intended or required by the researcher. But if we postpone the entry of the
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fixed theta (measurement error variance) until Step 2, and Step 2 fails because of
this fixed value, we have another problem. Step 1 is supposed to have told us we
have the proper number of factors (we passed Step 1), yet Step 2 says that one of
the factors cannot be the factor the researcher wants in his or her model. That is, the
factors in the Step-1 model are not necessarily the same factors that are in the
Step-2 or Step-3 base model with the specific gold-standard meaning imposed by
the fixed theta. To go back to Step 1 and add another factor, we would have to chal-
lenge the claim that Step 1 determines anything definitive about the required num-
ber of factors/concepts. Alternatively, the researcher might back off the
gold-standard indicator, irrespective of how many strong and convincing studies
have been done to establish that gold standard. Both options are uncomfortable for
the four-step advocate. It is not easy to back away from the idea that fit at Step 1 de-
termines the proper number of factors/concepts, nor is it easy to claim that applica-
tion of the four-step should be restricted to areas of study for which there are no
solid or trustworthy indicators. This would mean the four-step is to be reserved for
use in disciplines that are lacking in established measures, so that one never en-
counters a really well-established indicator of any concept/factor.

This conundrum gets worse if we apply a parallel argument to the structural part
of the model. Suppose the researcher’s theory demands that a specific concept be
linked to some other concepts with some very specific effects. If this concept is not
coordinated in this way, it simply is not the proper concept. That is, the substantive
area has sufficient theoretical integrity to demand specific theoretical connections
between some of its conceptual entities. Now for the parallel problem. Suppose we
leave entry of these theoretically motivated constraints until Step 3, and then we
encounter model failure because of these constraints. Steps 1 and 2 may have been
passed, but forcing the concept to be “the intended theoretical concept” makes the
model fail, just as forcing a more specific meaning on the concept with a fixed
measurement error variance might make a later model fail.

It seems that one reasonable option might be to consider whether the model
might require insertion of another concept/factor to accommodate the theoretically
demanded conceptual meaning—despite one’s having successfully passed Steps 1
and 2, which are supposed to have determined the number and identity of the fac-
tors/concepts.*® This says that the measurement issues have not been convincingly
settled even by successful model fits at Steps 1 and 2, and that measurement re-
mains an open issue all the way to Step 3.

The phenomenon grounding the fixed measurement error variance and de-
manded-theoretical-structure problems seems to be that while “some” factors
might pass Steps 1 and 2, there is insufficient control of those factors to be sure that
they are “the same factors/concepts” demanded by the theoretically and method-
ologically dictated constraints. Again, the promised separability of measurement

4See Hayduk 3/21/97 1:37 p.m. and the related exchanges.
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from stryctural concerns is lost, and the separation of measurement from structure
seems artificial and incomplete.

The “No Peeking” Problem

To maximize the independence of the test at the various steps, the researcher using
the four-step should not use knowledge of the estimates obtained at any prior step in
making decisions about the model being tested at a later step. This is because using
the data to modify the model compromises the ability of the data to test that model.
Coefficient estimates are data-coordinated (Hayduk, 1987, p. 139), so looking at
the estimates is tantamount to peeking at the data. Hence, four-steppers are not sup-
posed to look at the estimates obtained at prior steps.!

This is problematic if substantial unexpected loadings, or absences of expected
loadings, at Step 1 are signs of measurement problems. Small loadings might be
indicating a factor/concept that is not as close to specific important indicators as it
ought to be, and the factor intercorrelations might indicate some concept has
moved closer to, or further from, specific other concepts than is reasonable, but the
four-stepper should not notice this and should not alter the model accordingly, lest
the next model test be compromised. So the poor researcher may be damned if he
or she does look (via compromising the later test), or doesn’t look (by missing the
problematic estimates).42 These “damned if you do, or don’t” conundrums are arti-
facts of the sequential testings inherent in the four-step process.

What Test and What Critical Value Should Be Used?

Two of the problematic details of the four-step procedure concern the test to use in
deciding whether to proceed from one step to the next, and the criterion value to use
for that test.*> We will begin by considering the .05 level typically used with the
chi-square test of model fit, and later examine the RMSEA as an alternative test.4

4"Mulaik 3/27/97.

“2See the exchanges following Hayduk 3/26/97.

43Stan insists that these are tests, and that the researcher stop and not go on if a test is failed at any step
(Mulaik 3/20/97 15%, 3/23/97 3:50 p.m., 3/24/97 25%, 4/16/97 3:35 a.m. 50%, 4/22/97 9:20 p.m.).
There was no discussion of what the four-stepper would do “if there were no significance tests.”

When Les and Stan addressed the issue of whether it was sufficient to pass the overall model fit crite-
rion, or whether the model had to fit in detail (e. 8., no modification indices over five or so), there seemed
to be consensus that detailed, and not just overall, fit was required at each step. Unfortunately, there are
no stated criteria for detailed fit, so one never really knows if one should proceed or not (see Mulaik
3/24/97 3:05 p.m. 30%, and Hayduk 3/25/97 4:04 p.m.). We ignore this contradiction by confining our
attention to the issue of overall fit at each step.

*“Nested models usually justify the use of a difference-chi-square test, but Stan did not propose this.
He uses three separate model chi-square tests, rather than one model chi-square test and two differ-
ence-chi-square tests via nesting. If a single model-test was used at Step 3, Stan would have a difference
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The Criterion Level, and Favoring Null

The four-step procedure is stuck with having to specify some boundary between
when a model does, and does not, fit well enough to permit proceeding to the next
step. The traditional rejection (stop and do not go on) criteria has been a probability
ofless than .05 for the chi-square test. We argue that the probability criterion should
be set much higher (larger) than .05 to compensate for the researcher’s favoring of
the test’s null hypothesis, rather than the alternative hypothesis.

To see why, consider the role played by random sampling fluctuations in ordi-
nary hypothesis testing. Imagine a researcher who postulates a relationship be-
tween two variables, gathers some data, and finds that the relationship in the
observed data is statistically significant (p < .05) because the observed correlation
is too far from the null hypothesis of zero relationship for it to be easily dismissed
as a sampling fluctuation. It would be rare for (there would be a probability less
than .05 of) a relationship of the observed strength to arise due to mere sampling
fluctuations if there were indeed no relationship in the population, so the re-
searcher is permitted to point to the data as nonchance evidence in favor of what-
ever theory prompted postulation of the relationship.

The point is that, before the researcher is permitted to use the data as evidence
supporting his or her favored theoretical position, he or she is required to demon-
strate that the supposed evidence cannot be explained away as a mere sampling
fluctuation around some other value that is reasonable and yet inconsistent with
the theory—in this instance the null hypothesis of no relationship between the
variables. The researcher proceeds in a way that secures the assent of a disbeliever
by demonstrating that the observations are unlikely to be mere chance occur-
rences, namely sampling fluctuations around a value that is inconsistent with the
theory.

Finding a p < .05 (passing the usual significance test) is a reply to anyone who
argues that “it’s not the forces described by the theory that resulted in the data ap-
pearing as they did (the nonzero correlation); it was a mere chance sampling fluc-
tuation around some other value (no relationship), so these data should not stand as
support for the theory.” The reply being provided by the researcher is that this ar-
gument is not tenable because it appeals to sampling fluctuations that, though pos-
sible, are rare, because they occur in less than 1 out of 20 random samples. Science
has been well served by demanding that theorists quell their claims until they have

test only at Step 1, and this would make the Step-1 test different from the usual factor-model test—which
a factor analysis proponent might find uncomfortable. Alternatively, if the single model-test was used at
Step 1, the Step-3 test would now be a difference-chi-square test, and we would have no overall test of
the base model, which would be uncomfortable for anyone who believes in testing the researcher’s real
model. Stan has not yet, to our knowledge, articulated why he prefers to have the Step-1 test be a usual
factor model chi-square test, rather than a difference-chi-square test, which nesting would ordinarily
warrant. We leave it to others to pursue the implications of this.
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evidence that a reasonable counterexplanation can be annulled via a demonstration
that the counterexplanation has to be stretched unreasonably by appealing to a
“very small and unlikely chance occurrence” (a probability of .05 or less) to ac-
count for the evidence/data.

Suppose now that the theorist proposes that there is no relationship, so that the
researcher favors what would ordinarily have been treated as the null hypothesis
counterexplanation. If we kept the usual .05 probability level, we would be saying
that the theorist should be permiited to loudly trumpet their theory until there is a
small chance that the theory is consistent with the observed data. Observing data
sufficiently far from zero that it could appear only half the time by chance sam-
pling fluctuations (a test with p = 0.5) would not quell the researcher’s claim of no
relationship (0.5 is well above the .05 critical value). Hence the researcher postu-
lating a null relation would (we think unjustifiably) be permitted to claim the data
is consistent with his or her theory, even though had that same researcher postu-
lated a nonzero relationship, a similar .5 probability would have been judged as
grossly insufficient to permit a similar proclamation that the data is consistent with
his or her theory.

An analogous difficulty plagues the chi-square test of structural equation mod-
els, and the tests of the four-steps in particular. The null hypothesis of the
chi-square test is that the covariance residuals created as the difference between
the observed data and model implied covariances are zero in the population. If the
model is correct it should permit perfect reproduction of the observed covariance
matrix, and consequently researchers hoping their models are correct are favoring
the null hypothesis of zero residuals (no remaining differences).

Instead of beginning a technical discussion of the power of tests and the relative
seriousness of Type I and Type II errors, let us satisfy ourselves by eavesdropping
on a debate between two researchers. Researcher A is doing the four-step, and you
are Reviewer B, who is considering A’s arguments. The debate ends with several
chi-square probabilities. You as reviewer, both here and in real life, will ultimately
decide whether the probability Researcher A selects is sufficient to convince you
that he or she has paid appropriate attention to sampling fluctuations for him or her
to confidently proceed to the next step of the four-step. By clarifying how a switch
to favoring null reverses the onus regarding sampling fluctuations, we hope to con-
vince you of the need to switch to a larger criterion value.45 So, are you (Reviewer
B) convinced that the model at this step is sufficiently trouble-free to permit Re-

It took several promptings (Hayduk 3/25/97; 4/7/97 8:47 a.m., 7:54 p-m.) to get Stan to commit
himselfon this, but he finally claimed that favoring null is not a reason to alter the probability used in the
test (Mulaik quoted in Hayduk 4/8/97 9:20 a.m.). This led to a side discussion in which several people
participated (see the SEMNET discussions between 4/22/97 and 4/27/97), but no general consensus was
reached. There was arevival of the favoring-null debate in October 1997 (this time between Les Hayduk
and Bill Shipley) that ended with an agreement that some change was indeed required. No one else on the
Net seemed willing to step forward to defend the continued use of .05.
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searcher A to proceed to the next step because A’s model probably is free of what-
ever problem would normally be detected at this step?

Researcher A: My Step-1 (or -2) model does pretty well at explaining the
covariances among the observed indicators. The differ-
ences between the observed covariances and the model im-
plied covariances have been minimized by the selection of
optimal coefficient estimates, and the remaining residual
covariances seem small and scattered. Granted, my model
does not account for ALL the covariances exactly, but few
models fit perfectly unless they are saturated with coeffi-
cients, so I conclude that my model fits the data sufficiently
well for me to proceed to the next step.

Reviewer B: | agree that the residuals report on discrepancies between
the data and what your model claims, but I see the discrep-
ancies as being large enough, and important enough, that
they constitute a direct statement that your model is incapa-
ble of matching up with the data it was supposed to explain.
The residuals are a direct assertion that there are discrepan-
cies between the only data you have and what your model,
aided by the best estimates, implies.

Researcher A:  But the residuals (discrepancies) are small and unimpor-
tant! In fact, the discrepancies are so small that they can be
dismissed as mere sampling fluctuations and hence they are
not signs of model failure.

Reviewer B:  I’'m not convinced. Large residuals are strong and direct ev-
idence of model failure, and I think the residuals you are re-
porting are big enough that they can’t be dismissed as mere
sampling fluctuations, and consequently I must conclude
that your Step-1 (or -2) model should be counted as failing
because it is inconsistent with the data.

Researcher A:  But look at the chi-square probability ... it’s insignificant.
This tells us that the differences between my model and the
data are not significant! The remaining differences are
likely to be mere sampling fluctuations, and nothing more!
The residuals are not big enough to be demonstrably any-
thing other than chance sampling fluctuations.

Reviewer B: It is not I who have to convince you that the residuals are
not chance. It is you who must convince your readers, me
included, that it is reasonable for us to dismiss residuals this
large as being likely due to chance. Your probability is
greater than .05, and hence is statistically insignificant, but
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you are making a mistake by thinking that this makes the
differences likely to be mere sampling fluctuations. I would
be inclined to believe you if the kinds of residuals you are
reporting were the kinds of residuals that occur frequently,
usually, routinely, or consistently as a result of chance sam-
pling fluctuation. But you are not reporting such residuals.
Your residuals are not the kind of residuals that are typical,
usual, or likely to arise from sampling fluctuations.
Researcher A:  Oh yes they are. They are insignificant! I am not appealing

to unusual kinds of sampling fluctuations. In fact my
model’s residuals are “ordinary” and are the kind of residu-
als that would be observed quite routinely because the
probability for chi-square says that residuals this large or
larger would be expected to happen:

Almost all the time (p = .95).

Most of the time (p = .75).

As often as not (p = .5).

Sometimes (p = .25).

Relatively rarely (p = .06, or in one out of about every

17 samples).

So, what number would you find sufficiently convincing to quiet your critical
tongue? We suspect you would be persuaded by A’s argument with a .95 probabil-
ity and be progressively less convinced as the probability declines. But this is in-
sufficient for us to recommend .95 as a criterion for model fit. A .95 criterion
would result in the relatively frequent appearance of another mistake, namely the
rejection of true models displaying even moderately likely random sampling fluc-
tuations. So we have reason to avoid both ends of the probability scale. The .06 end
makes Researcher A lose the above argument, whereas the .95 end demands atypi-
cally small sampling fluctuations, and increases the likelihood of rejecting true
models.

Although .5 might be a reasonable numerical compromise, this insufficiently
acknowledges that science has found it prudent to place more burden on the advo-
cate (Researcher A) than on the skeptic (Reviewer B). Hayduk recommended that
one should “aim for probabilities in the .75 region” (1996, p. 77) and for “p>.75 or
s0” (1996, p. 69), thereby acknowledging the advocate’s burden while simulta-
neously setting a fuzzier boundary to augment consideration of the distinction be-
tween “failing to reject” and “knowing it isn’t.” This softer line on hypothesis
testing is not easy for four-steppers to accept. They need a clear decision rule, so
they “know” whether to proceed or not. We will leave the four-step proponents to
argue among themselves over the precise new probability criterion, knowing that
the researcher’s implicit favoring of the null hypothesis will make four-steppers
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consistently lose the above argument until they adopt a probability considerably
larger than .05.46 Note that this problem will remain, no matter what null-favoring
test is used.

Which Test: Chi-Square or RMSEA?

The early use of the chi-square test (James, Mulaik, & Brett, 1982) and chi-square’s
nice statistical properties led to this being the most commonly used test with the
four-step. Unfortunately, Stan found that even at the lax .05 level, the chi-square
test was rejecting more models than he liked, so he went looking for a less stringent
test, namely a test of close fit rather than a test of exact fit.# There seem to be two
styles of problems attached to this endeavor.

First, the logic of testing close fit does not match with the requirements of the
four-step. For example, the Step-1 test is supposed to inform us whether we have
the proper number of factors. What is the poor four-stepper to do with even the best
possible news from a close-fit test at Step 1? The best news would be that we have
close to the proper number of factors, while presumably chi-square tells us we do
not have the proper number of factors.*8 It would seem unreasonable to proceed to
the next step, no matter how “close” this “close” is to the proper number. The move
to “close enough” constitutes a direct assault on the ability of Step 1 to confidently

“6In the SEMNET discussion, Stan stuck to the .05 level when confronted with the problems created
by favoring null (Mulaik quoted in Hayduk 4/8/97 9:20 a.m.). It remains to be seen whether other
four-steppers will similarly choose the hard place in the argument over fear of a slippery probability
slope.

The suggestions that models with high chi-square probabilities are necessarily artifacts of capitaliz-
ing on chance during extended data snooping, or that these are artifacts of trivial structural sparsity, were
refuted in the SEMNET discussions by pointing to Hayduk, Stratkotter, and Rovers (1997) as a clear
counterexample. The Rigdon (4/18/98 2:40 p.m.)-Hayduk (4/20/98 12:56 p.m.) exchange is also in-
structive in this regard.

“"Mulaik 4/11/97 8:39 p.m., 4/14/97 1:43 a.m., 4/17/97 3:40 p.m., and 5/14/97 6:00 p.m. This sounds
much more sophisticated when one uses stat-speak to describe how a laxer standard leads to acceptance
of models with small chi-square probabilities. “In comparison with the test of exact fit, the same test sta-
tistic is used, but the value of ¥, will be greater because critical values in the noncentral distribution of
%% are shifted to the right of corresponding values in the central distribution of x2,” (MacCallum,
Browne, & Sugawara, 1996, p. 135).

‘We have found that the probability for the chi-square test is informative and worth paying attention to
(Hayduk, 1996, p. 201). Stan, and others, on the other hand, are seeking another test because the
chi-square test seems inclined to request more factors than they desire. One way to read this general
complaint is that the chi-square test is detecting and reporting on biases in factor-analytic practice that
lead to specification of too few factors. A dedicated “pursuit” of the minimum number of factors might
just do this.

“8Had y? indicated we had the proper number, then there would be no need for using a test of close fit.
Note that here we are only putatively granting that Step 1 actually tests for the proper number of factors.
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locate the number of required concepts, and without this assuredness the four-step
is robbed of its ability to pinpoint uniquely measurement problems.

Second, the chi-square probability, now presumably less than .05, will not dis-
appear when a new test is discovered, so Researcher A’s side of the favoring-null
argument will be even weaker. Researcher A will begin by pleading for permission
to be excused from the standards to which others are held because he or she has the
audacity to admit right up front that his or her model is not likely to be the correct
model. This will probably be attributed to a weak literature, or a complex world,
but prudence demands that we suspect that this may be due to a misreading of the
literature, or the researcher’s complex mistakes.

For researchers propounding close fit, the Step-3 model isn’t possibly true, it is
just close; and the coefficients added to get to Step 2 keep the model just close; and
the coefficients added to get to Step 1 keep the model close, but it is not yet correct.
And then the researcher will plead that we have learned something definite about
measurement and structural failures. Fortunately, %’s definite statement is still
there to confront anyone attempting to weave multiple almost-so stories into confi-
dent assertions.

If the base (Step-3) model has sufficient integrity to represent a specific per-
spective or theoretical stance, then it is newsworthy whether it fits or fails. A fail-
ing mode! should be published by highlighting the style of failure, and the
evidence resulting in failure, and not excused as close enough to overlook the fail-
ings (Hayduk, 1996, p. 4; Hayduk & Avakame, 1990). A discipline preferring to
accept close-fit models, as opposed to highlighting the remaining failings of mod-
els, is degenerating as a discipline because it is unable to encourage its practitio-
ners to build models with sufficient integrity and clarity that either fit or failure is
informative.

Throwing in a handful of free concept covariances (Step-2 model) followed by
a bucket of free loadings (Step 1) directly attacks whatever precision the re-
searcher might have imbedded in the real Step-3 model. Combining this with a
plea that chi-square should be overlooked in favor of anything close seems suffi-
cient to guarantee that whatever precision was included in the Step 3 is lost under
the onslaught of the progressive loosenings.

The aforementioned difficulties arise no matter which particular test of close fit
the four-stepper adopts. Additional problems may accompany the specific test of
close fit one uses, such as the RMSEA suggested by Stan.4?

““Mulaik 4/9/97 5:02 p.m., 4/11/97 8:39 p.m., 4/14/97 1:43 a.m. 80%, and 4/7/97.

In discussing the RMSEA, Browne and Cudeck (1993) granted that “in the social sciences it is im-
plausible that any model that we use is anything more than an approximation to reality. Because a null
hypothesis that a model fits exactly in some population is known a priori to be false, it seems pointless
eventotry to test whether it is true” (1993, p. 137). The “null hypothesis of exact fit ... is invariably false
in practical situations™ (1993, p. 146). This may fit well with factor-analytic tradition and its progressive
inclusion of more factors, but it is substantially at odds with Step 3 of the four-step and the perspective
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The RMSEA

The RMSEA was introduced by Steiger and Lind (1980) and the underlying mathe-
matics was developed in Steiger, Shapiro, and Browne (1985). Accessible discus-
sions of the RMSEA have been provided by Browne and Cudeck (1993) and
MacCallum, Browne, and Sugawara (1996). The core of the RMSEA is a tradeoff
between ill fit and parsimony created by calculating the amount of model ill fit per
degree of freedom (ﬁ'/d). According to Browne and Cudeck (p. 145) and
MacCallum, Browne, and Sugawara (p. 134, equations 5 and 7), a point estimate of
the RMSEA is provided by

where F is the minimum of the fit function applying a model with d degrees of free-
dom to a covariance matrix based on a sample of n + 1 cases.®® “Max” in this for-
mula makes the RMSEA the square root of the term in parentheses if this term is
greater than zero, or the square root of zero, which is zero, if the parenthetic term
happens to be negative.

To see why this is a measure of close fit, rather than exact fit, we need to con-
sider when the parenthetic term becomes less than zero. This is most easily seen if
we rearrange the formula by multiplying the parenthetic term by 1.0 in the form of
n/n. This results in

taken in Hayduk (1996), and it is contradicted any time a social science model fits well (e.g., Hayduk,
Stratkotter, & Rovers, 1996).

Browne and Cudeck (1993, p. 157) wamed that the RMSEA “should not be used in a mechanical de-
cision process for selecting a model.” Unfortunately, this is precisely what the four-step needs, namely a
decision rule to be applied routinely, across contexts, and with considerable standardization. So Stan is
pushing the RMSEA in ways the RMSEA founders discourage. This does not make Stan wrong, just
lonesome.

%We confine our discussion to the maximum likelihood fit function though Browne and Cudeck
(1993) considered the GLS and ADF functions as alternative specifications of the RMSEA.,
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in which we notice that n F equals the usual likelihood ratio chi-square for the fit of
the estimated model to the data, so

In this form it is easy to see when Max must be invoked to keep the RMSEA
from becoming the square root of a negative number. %2, d, and n, are all positive,
s0 the term under the radical sign becomes negative only if %2/d is less than 1.0.
The mean of a chi-square distribution equals the degrees of freedom for that distri-
bution, so x2/d will be less than 1.0, and hence the RMSEA will become zero
through use of Max, whenever the model chi-square falls below the mean of the
appropriate chi-square sampling distribution. This should happen about half the
time, if the postulated model is the proper model.

So the RMSEA is useless for comparing pretty good models. Proper models
would result in zero RMSEA values (via use of Max) about half the time, while
nearly proper models would result in zero RMSEA values nearly half the time. Be-
cause all models resulting in a chi-square probability greater than .5 will provide a
“perfectly close fit” of 0.0 RMSEA, the nonzero values of the RMSEA are left to
distinguish among degrees of poorer model fit. So the 0.0 ideal target value for the
RMSEA corresponds to a chi-square probability target of .5. Clearly, this close a
close fit is insufficient to help four-steppers struggling with chi-square probabili-
ties smaller than .05, so there is undoubtedly something else also going on in addi-
tion to the use of x%d and Max to weaken the test criterion.

In fact, two other things are happening, one thing that could be very helpful for
the four-step, and a second thing that, unfortunately, nullifies the potentially help-
ful thing. Both the helpful and unhelpful observations are connected to the sugges-
tion to use a .05 or smaller value of the RMSEA as “close enough” to be considered
an acceptably close fit.5! We saw above that a zero target for the RMSEA has al-
ready moved us from considering an exact-fitting model to a close-fitting model,
so the suggestion to accept RMSEA values up to .05 is asking us to grant that
something even “close to a close fit” is still close enough. This sounds a bit devi-
ous, so let’s check it out.

What would an RMSEA target of .05 mean? Surprisingly, this question has no
answer because the question itself is flawed. The .05 value is not a “target.” It is a
sample-size-dependent adjustment to what is called “close,” and a potentially huge
adjustment at that. To see this, consider what requiring an RMSEA of less than .05

$'Mulaik 4/9/97 5:02 p.m., 4/11/97 8:39 p.m.
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means for a sample size of 201, so n = 200. Plugging this » and the proposed .05
value into the equation for RMSEA above tells us our model is acceptably close if
the chi-square to degrees of freedom ratio satisfies

05> Jx2 /d-1)/n
(052 (200)+)>%2 /d
L5>x%/d

This informs us that seeking an RMSEA of “less than .05” with n = 200 is the
same as seeking a ?/d ratio of less than 1.5. Figure 2 was created by repeating this
style of calculation to locate the ¥2/d ratios required to satisfy the .05 “criterion”
for other sample sizes, as well as for other potential RMSEA “criterion” (namely,
.01, .03, .08, and .10).

This figure makes it clear that the .05 value is a sample-size adjustment because
it determines how much we are willing to alter the required tradeoff between parsi-
mony and fit (the x%/d ratio) in recognition of increasing sample size, beyond the
1.0 ratio already demanded by the Max specification in the definition of the
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FIGURE2 TheRMSEA close-fit criterion as a sample size () adjustment to the %/ d'target.
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RMSEA. Specifying .001 as the RMSEA “target” would require that samples of
all sizes adopt a x2/d ratio near 1.0 as their close-fit target, while a value of .1
would judge x2/d ratios of about 6.0 as acceptable for samples of 500. A value of
6.0 seems positively disgusting once one notices that even values like 3.0 push one
right off the edge of x2/d tables (e.g., Wonnacott & Wonnacott, 1970, p. 420). For
an n= 500, an RMSEA “target” of .05 corresponds to a 2/d “target” of 2.25, which
for 20 df corresponds to a chi-square probability of about .001. So what is meant by
“close” with an RMSEA “target” of .05 is “far out”—in the tails that is. And then
things get worse. We will be asked to accept models whose estimated RMSEA val-
ues are even within sampling fluctuations of this “target” that has now been doubly
removed from a target of a proper model.

But should we, or anyone, permit any sample size adjustment at all to the as-
sessment of what is an acceptably close fit? Our answer is no. The increasing pre-
cision that comes from using larger sample sizes should provide shorter interval
estimates of the population RMSEA, so that we know more assuredly whether or
not our model is within the required closeness—putatively a x?/d ratio of 1.0. If the
model is wrong by more than close fit permits, this should be more easily detected
with a large sample, so we would expect, indeed hope, that larger samples would
help us detect and reject models whose true fit was just beyond the close-fit limit.
Only if the RMSEA estimator is biased in that increasing sample size makes it tend
to unjustifiably reject models truly under the close-fit limit, should we permit a
sample-size adjustment to the close-fit target. This has not been shown to be a
problem for the RMSEA, so we must object to any sample-size adjustment to the
close-fit criterion. While the formula for the ¥2/d ratio implicitly contains », be-
cause Y2 = nF, this does not mean that an adjustment for # is required. For true
models, the sampling distribution for %2 is not dependent on n (see Bollen, 1990).
The .05 RMSEA criterion is not a statistically dictated bias correction. It is an elas-
tic tape measure that four-steppers, and others, can stretch to let them accept mod-
els they would like to accept.52

The RMSEA has a known sampling distribution, and this would seem to permit
the four-steppers to avoid the “favouring null” problem discussed above. By speci-

52Browne and Cudeck (1993) and MacCallum, Browne, and Sugawara (1996) seemed not to recog-
nize the connection between the RMSEA criterion and sample size. They based their target value on ex-
perience with models that %2 rejected but they wanted to accept. Consequently, they “streeeeetched” the
unrecognized sample size adjustment until they got the desired conclusion. When MacCallum, Browne,
and Sugawara (1996, p. 134) claimed that a particular value “yielded conclusions about model fit consis-
tent with previous analyses of the same data sets,” they were indicating what they would like to have
found for these data sets, were it of course not for the bad news provided by that pesky oid basic model
chi-square.

Stan’s .05 criterion stretches the adjustment pretty far, but not as far as MacCallum, Browne, and
Sugawara (1996, p. 134), who “consider values in the range of 0.08 to 0.10 to indicate mediocre fit.” We
are waiting for the tautly stretched elastic measuring tape to snap.
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fying a not-close-enough value of the RMSEA as a null hypothesis, the researcher
could pit this against the alternative hypothesis that their model actually fits signif-
icantly better than (closer than) this not-close-enough fit. The researcher would
therefore be favoring the alternative hypothesis, and hence would avoid the favor-
ing-null problem.>3

This would indeed be great news, but unfortunately something has gone wrong.
An RMSEA value like .05 is not a criterion value; it is a specification of a sam-
ple-size adjustment. We saw in Figure 2 that an RMSEA of .05 specifies the degree
to which one is willing to adjust one’s criterion on the basis of sample size. So test-
ingto see if one’s RMSEA is significantly smaller than .05 is testing whether a sig-
nificantly smaller sample-size adjustment (a less stretched elastic measuring tape)
would have let one accept this model. It does not test whether the model RMSEA
has passed some consistent close-fit criterion.54

So where does this leave four-steppers who propose using the RMSEA as a
test? It leaves them arguing for close fit of zero, or within sampling fluctuations of
zero, which is merely a way of pleading for permission to use a smaller chi-square
probability than other researchers have traditionally been held to. The RMSEA
can’t help them solve the favoring-null problem. In fact, use of the RMSEA aggra-
vates the favouring-null problem because it implicitly counts larger sampling fluc-
tuations as being to the researcher’s credit.

SUMMARY AND CONCLUSION

The four-step proposes that measurement can and should be assessed prior to struc-
ture during the assessment of structural equation models. Most of our comments
question the separability or isolatability of measurement determinations from
structural determinations, and hence question the utility of sequential testing of the
proposed models.

We began by observing that the four-step is only applicable to confirmatory
studies postulating nonsaturated structural models, and to studies in which the base
model has at least four indicators for each and every concept. Furthermore, it is

530ne could start with a null hypothesis claiming that the model fit is poor (say a RMSEA of .05 or
more) and reject this assessment only if the observed RMSEA were significantly smaller (closer, or
better fitting) than this. This is asking if the observed RMSEA is significantly below the .05 line in Fig-
ure 2. See MacCallum, Browne, and Sugawara (1996, pp. 135-136).

**The self-contradictoriness of this test becomes obvious if one considers trying to locate samples
that are significantly lower than one of the diagonal lines in Figure 2, while gradually pulling down the
right end of the line until it lies horizontally at a 4*/d ratio of 1.0, namely to a position where there is no
sample-size adjustment. Now note that the RMSEA is defined as zero (via Max) for all samples with ra-
tios less than 1.0, so we will never find any evidence of close fit (in the absence of a sample-size adjust-
ment) other than an RMSEA of exactly 0.0 via invocation of Max.
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probably practicable with only medium-sized models. Too few concepts make it
difficult to attain a reasonable degree of structural sparseness, whereas very many
concepts, with four or more indicators each, demand huge sample sizes.

The four-step process is plagued by one fundamental problem and numerous
operating problems. The fundamental problem is Step 1°s inability to ascertain
whether the researcher has the proper number of concepts. The mandatory addition
of coefficients during construction of the Step-1 model introduces a host of
anticipatedly unnecessary coefficients that make the Step-1 model prone to fitting
with fewer factors than actually populate the real world. The problem seems to be
that the procedural demand to add coefficients that convert the base model into an
ordinary factor model simultaneously converts the base model into a model whose
fundamental form is untestable. The Step-1 chi-square test assumes, but does not
test, whether the factor model is the appropriate model. If the assumption is valid,
then the chi-square test could help us determine the number of factors required, but
if the real-world model is not a factor model, then the chi-square test can provide
acceptable fit with a wildly wrong number of concepts.

Neither we nor anyone else knows for sure how often researchers have been, or
will be, misled by factor models that fit with too few concepts. Unfortunately, there
are two signs that make it appear that this may happen more, rather than less, fre-
quently. First, the factor model is entirely incapable of detecting any number of con-
cepts/factors beyond the number that saturate the model. Given that it takes onlya
relatively small number of factors to saturate the factor model (recall the many added
coefficients), the factor model test is entirely incapable of protecting the researcher
from, or informing the researcher about, unexpectedly complex real worlds—and
the real world seems to quite consistently turn out to be unexpectedly complex.

Second, the factor model shows only a slow and progressive decline in fit when
the factor model is the wrong model and there are slightly fewer than the saturating
number of coefficients. That is, if the factor model includes way too few fac-
tors/concepts, the factor model chi-square test does not jump from saying there is
no test when the model is saturated, to saying the model is definitely wrong when
the factor model has a few (one, or two, or five) degrees of freedom. Losing a load-
ing or five does not radically disrupt the factor model’s ability to reproduce the
covariance data; the loss of loadings merely degrades the ability slowly and pro-
gressively. This means that even if the factor model has a wildly low number of
factors, the warning signs of this problem are not sharply demarcated between no
model test (saturation) and some model test (some degrees of freedom). So the
ability of the factor model to detect the specification of wildly wrong numbers of
factors does not improve instantaneously as one moves from being “at” to being
“below” the saturating number of estimated coefficients.

Together these signs are extremely worrisome. They suggest that the factor
model chi-square test may be more than occasionally reporting fit or near fit, when
in fact the model contains a radical misspecification of the number of factors.
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The four-step’s operating problems are primarily associated with testing. We
began our critique of testing by noting the inappropriateness of using .05 as the
critical probability differentiating model fit from failure. The favoring of the null
hypothesis of the test argues that a substantially larger target probability should be
used. Unfortunately, Stan seems inclined to use a smaller, not larger, probability
because even the .05 criterion rejects more models than he likes.

Using the RMSEA as a test of “close fit” would indeed lower the probability
criterion, but this has a couple of problems, in addition to exacerbating the favor-
ing-null problem. First, the proposed target value of .05 for the RMSEA is a sam-
ple-size adjustment, and it is not a target value. Second, the logic of “close fit” is at
odds with the logic of the four-step, which demands that Step 1 locate the proper
number of factors, not “close to” the proper number of factors, if one is to say any-
thing definitive about measurement.

Then we have the no-peeking conundrum, where the researcher is not supposed
to look at the estimates from the prior steps, lest he or she contaminate the later
tests, yet where those prior estimates may contain useful diagnostic information.
So the researcher either sacrifices the purity of his or her testing or becomes oblivi-
ous to potentially useful diagnostic information.

Then we encountered the problem that researchers with even a dash of dedica-
tion to theory will want to have the concepts in their models behave in ways that
make them “the proper concepts” and not just any old concepts. To know, for ex-
ample, that six concepts in an arrangement might be able to match up with the data
is of limited interest to a researcher whose Step-3 model indicates the researcher’s
specific six concepts do not fit with the data. If “these” specific 6 concepts were
chosen because they were of interest to a discipline, it seems the researcher would
be well advised to publish and highlight the failure of the disciplinarily relevant 6
concepts, leaving open whether the resolution of the discipline’s problems will ul-
timately appeal to another 6 concepts, or to 7, or to 10 concepts. A sparse
10-concept model can be even more parsimonious than a 6-factor model, so there
seems to be no reason to automatically favor any other 6-concept models over
models with more concepts.

We do not wish to leave the impression that we are against the use of nested
models, which are at the heart of the four-step process. In fact, we encourage re-
searchers to develop and employ whatever nested models provide the clearest as-
sessment of whatever points are relevant to their particular literature. Where we
depart from the four-step is that we do not anticipate that a specific nesting se-
quence is likely to be so routinely informative that it warrants routine application.

One could, for example, start with a base model and saturate the loadings, leav-
ing the structural effects as in the base model, to get to another style of Step-2
nested model. This would impose or demand a structural theory prior to a measure-
ment determination, so that one would be seeking measures of entities that be-
haved in appropriate theoretical ways. This approach suggests we would be better
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able to assess measurement if that assessment is made in the context of the relevant
theoretical distinctions. But even this is not enough to prompt us to suggest routine
use of this alternative style of nesting.

Once one starts thinking this way, one quickly notices that any nesting em-
ployed should be dependent on what the researcher wants to know. To continue the
example just given, we might anticipate that only some, and not all, of the con-
cept-to-item loadings might be used to create the nested model. Which specific
concepts/factors might be especially likely to influence a wider span of items will
be open to reassessment in each research context, so here again we will probably
find that there is no single best nesting strategy.

If scientific history is our guide, we might as well stop anticipating that mea-
surement and structural components will ever be disentangled at the cutting edge
of science. Indeed, it is a laudable scientific contribution to have used a sparse
structural theory to assist in disentangling a dense and complex measurement
model (Hayduk, 1996, pp. 53-54, 69). The task is not so much to find a minimal
number of concepts as it is to find ways of clearly distinguishing and respecting the
uniqueness of each concept. The structural model becomes substantially sparse out
of respect for maintaining the distinguishing, indeed defining, actions of the con-
cepts. From this perspective, the four-step’s move from Step 3 to Step 2 to Step 1
progressively robs the model of whatever theoretical precision the intentionally
unique conceptual effects had to offer. This leaves the Step-1 model to try to deter-
mine the proper number of concepts in the absence of theoretical control. One gets
back to the Step-1 factor model, where the minimum number is king only because
someone killed the theory queen. At the scientific monarch’s ball, we would prefer
you not waltz the four-step; instead leap the fore-step.
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